| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rehalfcld | GIF version | ||
| Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rehalfcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rehalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rehalfcl 9235 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℝcr 7895 / cdiv 8716 2c2 9058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-2 9066 |
| This theorem is referenced by: div4p1lem1div2 9262 fldiv4p1lem1div2 10412 fldiv4lem1div2uz2 10413 facavg 10855 recl 11035 crre 11039 cvg1nlemres 11167 recvguniqlem 11176 resqrexlemp1rp 11188 resqrexlemfp1 11191 maxabslemlub 11389 maxabslemval 11390 maxcl 11392 resin4p 11900 recos4p 11901 cos01bnd 11940 cos12dec 11950 nno 12088 4sqlem5 12576 4sqlem6 12577 4sqlem10 12581 4sqlem15 12599 4sqlem16 12600 blhalf 14728 ioo2bl 14871 ioo2blex 14872 maxcncf 14935 mincncf 14936 cosordlem 15169 gausslemma2dlem1a 15383 gausslemma2dlem2 15387 gausslemma2dlem3 15388 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem1a2 15412 2lgslem1c 15415 2sqlem8 15448 apdifflemf 15777 |
| Copyright terms: Public domain | W3C validator |