| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rehalfcld | GIF version | ||
| Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rehalfcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rehalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rehalfcl 9294 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 (class class class)co 5962 ℝcr 7954 / cdiv 8775 2c2 9117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-2 9125 |
| This theorem is referenced by: div4p1lem1div2 9321 fldiv4p1lem1div2 10480 fldiv4lem1div2uz2 10481 facavg 10923 recl 11249 crre 11253 cvg1nlemres 11381 recvguniqlem 11390 resqrexlemp1rp 11402 resqrexlemfp1 11405 maxabslemlub 11603 maxabslemval 11604 maxcl 11606 resin4p 12114 recos4p 12115 cos01bnd 12154 cos12dec 12164 nno 12302 4sqlem5 12790 4sqlem6 12791 4sqlem10 12795 4sqlem15 12813 4sqlem16 12814 blhalf 14965 ioo2bl 15108 ioo2blex 15109 maxcncf 15172 mincncf 15173 cosordlem 15406 gausslemma2dlem1a 15620 gausslemma2dlem2 15624 gausslemma2dlem3 15625 lgsquadlem1 15639 lgsquadlem2 15640 2lgslem1a2 15649 2lgslem1c 15652 2sqlem8 15685 apdifflemf 16157 |
| Copyright terms: Public domain | W3C validator |