| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rehalfcld | GIF version | ||
| Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rehalfcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rehalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rehalfcl 9264 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 (class class class)co 5944 ℝcr 7924 / cdiv 8745 2c2 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-2 9095 |
| This theorem is referenced by: div4p1lem1div2 9291 fldiv4p1lem1div2 10448 fldiv4lem1div2uz2 10449 facavg 10891 recl 11164 crre 11168 cvg1nlemres 11296 recvguniqlem 11305 resqrexlemp1rp 11317 resqrexlemfp1 11320 maxabslemlub 11518 maxabslemval 11519 maxcl 11521 resin4p 12029 recos4p 12030 cos01bnd 12069 cos12dec 12079 nno 12217 4sqlem5 12705 4sqlem6 12706 4sqlem10 12710 4sqlem15 12728 4sqlem16 12729 blhalf 14880 ioo2bl 15023 ioo2blex 15024 maxcncf 15087 mincncf 15088 cosordlem 15321 gausslemma2dlem1a 15535 gausslemma2dlem2 15539 gausslemma2dlem3 15540 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1a2 15564 2lgslem1c 15567 2sqlem8 15600 apdifflemf 15985 |
| Copyright terms: Public domain | W3C validator |