| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rehalfcld | GIF version | ||
| Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rehalfcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rehalfcld | ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rehalfcl 9221 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 / 2) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5923 ℝcr 7881 / cdiv 8702 2c2 9044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-2 9052 |
| This theorem is referenced by: div4p1lem1div2 9248 fldiv4p1lem1div2 10398 fldiv4lem1div2uz2 10399 facavg 10841 recl 11021 crre 11025 cvg1nlemres 11153 recvguniqlem 11162 resqrexlemp1rp 11174 resqrexlemfp1 11177 maxabslemlub 11375 maxabslemval 11376 maxcl 11378 resin4p 11886 recos4p 11887 cos01bnd 11926 cos12dec 11936 nno 12074 4sqlem5 12562 4sqlem6 12563 4sqlem10 12567 4sqlem15 12585 4sqlem16 12586 blhalf 14670 ioo2bl 14813 ioo2blex 14814 maxcncf 14877 mincncf 14878 cosordlem 15111 gausslemma2dlem1a 15325 gausslemma2dlem2 15329 gausslemma2dlem3 15330 lgsquadlem1 15344 lgsquadlem2 15345 2lgslem1a2 15354 2lgslem1c 15357 2sqlem8 15390 apdifflemf 15717 |
| Copyright terms: Public domain | W3C validator |