ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rehalfcld GIF version

Theorem rehalfcld 8978
Description: Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
rehalfcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
rehalfcld (𝜑 → (𝐴 / 2) ∈ ℝ)

Proof of Theorem rehalfcld
StepHypRef Expression
1 rehalfcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rehalfcl 8959 . 2 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
31, 2syl 14 1 (𝜑 → (𝐴 / 2) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  (class class class)co 5774  cr 7631   / cdiv 8444  2c2 8783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-2 8791
This theorem is referenced by:  div4p1lem1div2  8985  fldiv4p1lem1div2  10090  facavg  10504  recl  10637  crre  10641  cvg1nlemres  10769  recvguniqlem  10778  resqrexlemp1rp  10790  resqrexlemfp1  10793  maxabslemlub  10991  maxabslemval  10992  maxcl  10994  resin4p  11436  recos4p  11437  cos01bnd  11476  cos12dec  11485  nno  11614  blhalf  12591  ioo2bl  12726  ioo2blex  12727  cosordlem  12952  apdifflemf  13346
  Copyright terms: Public domain W3C validator