![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6rbbr | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl6rbbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6rbbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6rbbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6rbbr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6rbbr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl6rbb 196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imimorbdc 862 baib 885 pm5.6dc 892 xornbidc 1350 mo2dc 2028 reu8 2847 sbc6g 2900 dfss4st 3273 r19.28m 3416 r19.45mv 3420 r19.44mv 3421 r19.27m 3422 ralsnsg 3525 ralsns 3526 iunconstm 3785 iinconstm 3786 exmidsssnc 4084 unisucg 4294 relsng 4600 funssres 5121 fncnv 5145 dff1o5 5330 funimass4 5424 fneqeql2 5481 fnniniseg2 5495 rexsupp 5496 unpreima 5497 dffo3 5519 funfvima 5601 dff13 5621 f1eqcocnv 5644 fliftf 5652 isocnv2 5665 eloprabga 5810 mpo2eqb 5832 opabex3d 5971 opabex3 5972 elxp6 6019 elxp7 6020 sbthlemi5 6799 sbthlemi6 6800 genpdflem 7257 ltnqpr 7343 ltexprlemloc 7357 xrlenlt 7747 negcon2 7932 dfinfre 8618 sup3exmid 8619 elznn 8968 zq 9314 rpnegap 9369 modqmuladdnn0 10028 shftdm 10481 rexfiuz 10647 rexanuz2 10649 sumsplitdc 11087 fsum2dlemstep 11089 odd2np1 11412 divalgb 11464 infssuzex 11484 isprm4 11640 ctiunctlemudc 11787 tx1cn 12274 tx2cn 12275 cnbl0 12517 cnblcld 12518 |
Copyright terms: Public domain | W3C validator |