| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulgrhm | Unicode version | ||
| Description: The powers of the element
 | 
| Ref | Expression | 
|---|---|
| mulgghm2.m | 
 | 
| mulgghm2.f | 
 | 
| mulgrhm.1 | 
 | 
| Ref | Expression | 
|---|---|
| mulgrhm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zringbas 14152 | 
. 2
 | |
| 2 | zring1 14157 | 
. 2
 | |
| 3 | mulgrhm.1 | 
. 2
 | |
| 4 | zringmulr 14155 | 
. 2
 | |
| 5 | eqid 2196 | 
. 2
 | |
| 6 | zringring 14149 | 
. . 3
 | |
| 7 | 6 | a1i 9 | 
. 2
 | 
| 8 | id 19 | 
. 2
 | |
| 9 | mulgghm2.f | 
. . . 4
 | |
| 10 | oveq1 5929 | 
. . . 4
 | |
| 11 | 1zzd 9353 | 
. . . 4
 | |
| 12 | eqid 2196 | 
. . . . . . 7
 | |
| 13 | 12, 3 | ringidcl 13576 | 
. . . . . 6
 | 
| 14 | mulgghm2.m | 
. . . . . . 7
 | |
| 15 | 12, 14 | mulg1 13259 | 
. . . . . 6
 | 
| 16 | 13, 15 | syl 14 | 
. . . . 5
 | 
| 17 | 16, 13 | eqeltrd 2273 | 
. . . 4
 | 
| 18 | 9, 10, 11, 17 | fvmptd3 5655 | 
. . 3
 | 
| 19 | 18, 16 | eqtrd 2229 | 
. 2
 | 
| 20 | ringgrp 13557 | 
. . . . . . . 8
 | |
| 21 | 20 | adantr 276 | 
. . . . . . 7
 | 
| 22 | simprr 531 | 
. . . . . . 7
 | |
| 23 | 13 | adantr 276 | 
. . . . . . 7
 | 
| 24 | 12, 14, 21, 22, 23 | mulgcld 13274 | 
. . . . . 6
 | 
| 25 | 12, 5, 3 | ringlidm 13579 | 
. . . . . 6
 | 
| 26 | 24, 25 | syldan 282 | 
. . . . 5
 | 
| 27 | 26 | oveq2d 5938 | 
. . . 4
 | 
| 28 | simpl 109 | 
. . . . 5
 | |
| 29 | simprl 529 | 
. . . . 5
 | |
| 30 | 12, 14, 5 | mulgass2 13614 | 
. . . . 5
 | 
| 31 | 28, 29, 23, 24, 30 | syl13anc 1251 | 
. . . 4
 | 
| 32 | 12, 14 | mulgass 13289 | 
. . . . 5
 | 
| 33 | 21, 29, 22, 23, 32 | syl13anc 1251 | 
. . . 4
 | 
| 34 | 27, 31, 33 | 3eqtr4rd 2240 | 
. . 3
 | 
| 35 | oveq1 5929 | 
. . . 4
 | |
| 36 | zmulcl 9379 | 
. . . . 5
 | |
| 37 | 36 | adantl 277 | 
. . . 4
 | 
| 38 | 12, 14, 21, 37, 23 | mulgcld 13274 | 
. . . 4
 | 
| 39 | 9, 35, 37, 38 | fvmptd3 5655 | 
. . 3
 | 
| 40 | oveq1 5929 | 
. . . . 5
 | |
| 41 | 12, 14, 21, 29, 23 | mulgcld 13274 | 
. . . . 5
 | 
| 42 | 9, 40, 29, 41 | fvmptd3 5655 | 
. . . 4
 | 
| 43 | oveq1 5929 | 
. . . . 5
 | |
| 44 | 9, 43, 22, 24 | fvmptd3 5655 | 
. . . 4
 | 
| 45 | 42, 44 | oveq12d 5940 | 
. . 3
 | 
| 46 | 34, 39, 45 | 3eqtr4d 2239 | 
. 2
 | 
| 47 | 14, 9, 12 | mulgghm2 14164 | 
. . 3
 | 
| 48 | 20, 13, 47 | syl2anc 411 | 
. 2
 | 
| 49 | 1, 2, 3, 4, 5, 7, 8, 19, 46, 48 | isrhm2d 13721 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-addf 8001 ax-mulf 8002 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-cj 11007 df-abs 11164 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mhm 13091 df-grp 13135 df-minusg 13136 df-mulg 13250 df-subg 13300 df-ghm 13371 df-cmn 13416 df-mgp 13477 df-ur 13516 df-ring 13554 df-cring 13555 df-rhm 13708 df-subrg 13775 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 | 
| This theorem is referenced by: mulgrhm2 14166 | 
| Copyright terms: Public domain | W3C validator |