ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm Unicode version

Theorem mulgrhm 13932
Description: The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgrhm.1  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
mulgrhm  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Distinct variable groups:    R, n    .x. , n    .1. ,
n
Allowed substitution hint:    F( n)

Proof of Theorem mulgrhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 13920 . 2  |-  ZZ  =  ( Base ` ring )
2 zring1 13925 . 2  |-  1  =  ( 1r ` ring )
3 mulgrhm.1 . 2  |-  .1.  =  ( 1r `  R )
4 zringmulr 13923 . 2  |-  x.  =  ( .r ` ring )
5 eqid 2189 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
6 zringring 13917 . . 3  |-ring  e.  Ring
76a1i 9 . 2  |-  ( R  e.  Ring  ->ring  e.  Ring )
8 id 19 . 2  |-  ( R  e.  Ring  ->  R  e. 
Ring )
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
10 oveq1 5907 . . . 4  |-  ( n  =  1  ->  (
n  .x.  .1.  )  =  ( 1  .x. 
.1.  ) )
11 1zzd 9315 . . . 4  |-  ( R  e.  Ring  ->  1  e.  ZZ )
12 eqid 2189 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
1312, 3ringidcl 13399 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
14 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
1512, 14mulg1 13094 . . . . . 6  |-  (  .1. 
e.  ( Base `  R
)  ->  ( 1 
.x.  .1.  )  =  .1.  )
1613, 15syl 14 . . . . 5  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  =  .1.  )
1716, 13eqeltrd 2266 . . . 4  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  e.  ( Base `  R )
)
189, 10, 11, 17fvmptd3 5633 . . 3  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  ( 1  .x.  .1.  ) )
1918, 16eqtrd 2222 . 2  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  .1.  )
20 ringgrp 13380 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2120adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Grp )
22 simprr 531 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
2313adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  .1.  e.  ( Base `  R )
)
2412, 14, 21, 22, 23mulgcld 13109 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( y  .x.  .1.  )  e.  (
Base `  R )
)
2512, 5, 3ringlidm 13402 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
y  .x.  .1.  )  e.  ( Base `  R
) )  ->  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2624, 25syldan 282 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  (  .1.  ( .r `  R ) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2726oveq2d 5916 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  (  .1.  ( .r `  R ) ( y  .x.  .1.  )
) )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
28 simpl 109 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Ring )
29 simprl 529 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
3012, 14, 5mulgass2 13435 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  .1.  e.  ( Base `  R
)  /\  ( y  .x.  .1.  )  e.  (
Base `  R )
) )  ->  (
( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R ) ( y 
.x.  .1.  ) )
) )
3128, 29, 23, 24, 30syl13anc 1251 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  .x.  .1.  )
( .r `  R
) ( y  .x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) ) ) )
3212, 14mulgass 13124 . . . . 5  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  ( Base `  R
) ) )  -> 
( ( x  x.  y )  .x.  .1.  )  =  ( x  .x.  ( y  .x.  .1.  ) ) )
3321, 29, 22, 23, 32syl13anc 1251 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
3427, 31, 333eqtr4rd 2233 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
35 oveq1 5907 . . . 4  |-  ( n  =  ( x  x.  y )  ->  (
n  .x.  .1.  )  =  ( ( x  x.  y )  .x.  .1.  ) )
36 zmulcl 9341 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3736adantl 277 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  x.  y )  e.  ZZ )
3812, 14, 21, 37, 23mulgcld 13109 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  e.  ( Base `  R )
)
399, 35, 37, 38fvmptd3 5633 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( x  x.  y
)  .x.  .1.  )
)
40 oveq1 5907 . . . . 5  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
4112, 14, 21, 29, 23mulgcld 13109 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  .1.  )  e.  (
Base `  R )
)
429, 40, 29, 41fvmptd3 5633 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  x )  =  ( x  .x.  .1.  )
)
43 oveq1 5907 . . . . 5  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
449, 43, 22, 24fvmptd3 5633 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  y )  =  ( y  .x.  .1.  )
)
4542, 44oveq12d 5918 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( F `  x )
( .r `  R
) ( F `  y ) )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
4634, 39, 453eqtr4d 2232 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( F `  x
) ( .r `  R ) ( F `
 y ) ) )
4714, 9, 12mulgghm2 13931 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  ( Base `  R
) )  ->  F  e.  (ring  GrpHom  R ) )
4820, 13, 47syl2anc 411 . 2  |-  ( R  e.  Ring  ->  F  e.  (ring  GrpHom  R ) )
491, 2, 3, 4, 5, 7, 8, 19, 46, 48isrhm2d 13540 1  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    |-> cmpt 4082   ` cfv 5238  (class class class)co 5900   1c1 7847    x. cmul 7851   ZZcz 9288   Basecbs 12523   .rcmulr 12601   Grpcgrp 12968  .gcmg 13084    GrpHom cghm 13204   1rcur 13338   Ringcrg 13375   RingHom crh 13525  ℤringczring 13914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-addf 7968  ax-mulf 7969
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-tp 3618  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-map 6680  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-5 9016  df-6 9017  df-7 9018  df-8 9019  df-9 9020  df-n0 9212  df-z 9289  df-dec 9420  df-uz 9564  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-cj 10892  df-struct 12525  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-mulr 12614  df-starv 12615  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-mhm 12934  df-grp 12971  df-minusg 12972  df-mulg 13085  df-subg 13134  df-ghm 13205  df-cmn 13250  df-mgp 13300  df-ur 13339  df-ring 13377  df-cring 13378  df-rhm 13527  df-subrg 13591  df-icnfld 13890  df-zring 13915
This theorem is referenced by:  mulgrhm2  13933
  Copyright terms: Public domain W3C validator