ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm Unicode version

Theorem mulgrhm 14241
Description: The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgrhm.1  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
mulgrhm  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Distinct variable groups:    R, n    .x. , n    .1. ,
n
Allowed substitution hint:    F( n)

Proof of Theorem mulgrhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 14228 . 2  |-  ZZ  =  ( Base ` ring )
2 zring1 14233 . 2  |-  1  =  ( 1r ` ring )
3 mulgrhm.1 . 2  |-  .1.  =  ( 1r `  R )
4 zringmulr 14231 . 2  |-  x.  =  ( .r ` ring )
5 eqid 2196 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
6 zringring 14225 . . 3  |-ring  e.  Ring
76a1i 9 . 2  |-  ( R  e.  Ring  ->ring  e.  Ring )
8 id 19 . 2  |-  ( R  e.  Ring  ->  R  e. 
Ring )
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
10 oveq1 5932 . . . 4  |-  ( n  =  1  ->  (
n  .x.  .1.  )  =  ( 1  .x. 
.1.  ) )
11 1zzd 9370 . . . 4  |-  ( R  e.  Ring  ->  1  e.  ZZ )
12 eqid 2196 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
1312, 3ringidcl 13652 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
14 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
1512, 14mulg1 13335 . . . . . 6  |-  (  .1. 
e.  ( Base `  R
)  ->  ( 1 
.x.  .1.  )  =  .1.  )
1613, 15syl 14 . . . . 5  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  =  .1.  )
1716, 13eqeltrd 2273 . . . 4  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  e.  ( Base `  R )
)
189, 10, 11, 17fvmptd3 5658 . . 3  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  ( 1  .x.  .1.  ) )
1918, 16eqtrd 2229 . 2  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  .1.  )
20 ringgrp 13633 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2120adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Grp )
22 simprr 531 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
2313adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  .1.  e.  ( Base `  R )
)
2412, 14, 21, 22, 23mulgcld 13350 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( y  .x.  .1.  )  e.  (
Base `  R )
)
2512, 5, 3ringlidm 13655 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
y  .x.  .1.  )  e.  ( Base `  R
) )  ->  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2624, 25syldan 282 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  (  .1.  ( .r `  R ) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2726oveq2d 5941 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  (  .1.  ( .r `  R ) ( y  .x.  .1.  )
) )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
28 simpl 109 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Ring )
29 simprl 529 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
3012, 14, 5mulgass2 13690 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  .1.  e.  ( Base `  R
)  /\  ( y  .x.  .1.  )  e.  (
Base `  R )
) )  ->  (
( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R ) ( y 
.x.  .1.  ) )
) )
3128, 29, 23, 24, 30syl13anc 1251 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  .x.  .1.  )
( .r `  R
) ( y  .x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) ) ) )
3212, 14mulgass 13365 . . . . 5  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  ( Base `  R
) ) )  -> 
( ( x  x.  y )  .x.  .1.  )  =  ( x  .x.  ( y  .x.  .1.  ) ) )
3321, 29, 22, 23, 32syl13anc 1251 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
3427, 31, 333eqtr4rd 2240 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
35 oveq1 5932 . . . 4  |-  ( n  =  ( x  x.  y )  ->  (
n  .x.  .1.  )  =  ( ( x  x.  y )  .x.  .1.  ) )
36 zmulcl 9396 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3736adantl 277 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  x.  y )  e.  ZZ )
3812, 14, 21, 37, 23mulgcld 13350 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  e.  ( Base `  R )
)
399, 35, 37, 38fvmptd3 5658 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( x  x.  y
)  .x.  .1.  )
)
40 oveq1 5932 . . . . 5  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
4112, 14, 21, 29, 23mulgcld 13350 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  .1.  )  e.  (
Base `  R )
)
429, 40, 29, 41fvmptd3 5658 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  x )  =  ( x  .x.  .1.  )
)
43 oveq1 5932 . . . . 5  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
449, 43, 22, 24fvmptd3 5658 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  y )  =  ( y  .x.  .1.  )
)
4542, 44oveq12d 5943 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( F `  x )
( .r `  R
) ( F `  y ) )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
4634, 39, 453eqtr4d 2239 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( F `  x
) ( .r `  R ) ( F `
 y ) ) )
4714, 9, 12mulgghm2 14240 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  ( Base `  R
) )  ->  F  e.  (ring  GrpHom  R ) )
4820, 13, 47syl2anc 411 . 2  |-  ( R  e.  Ring  ->  F  e.  (ring  GrpHom  R ) )
491, 2, 3, 4, 5, 7, 8, 19, 46, 48isrhm2d 13797 1  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   1c1 7897    x. cmul 7901   ZZcz 9343   Basecbs 12703   .rcmulr 12781   Grpcgrp 13202  .gcmg 13325    GrpHom cghm 13446   1rcur 13591   Ringcrg 13628   RingHom crh 13782  ℤringczring 14222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-cj 11024  df-abs 11181  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-mulg 13326  df-subg 13376  df-ghm 13447  df-cmn 13492  df-mgp 13553  df-ur 13592  df-ring 13630  df-cring 13631  df-rhm 13784  df-subrg 13851  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-zring 14223
This theorem is referenced by:  mulgrhm2  14242
  Copyright terms: Public domain W3C validator