ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm Unicode version

Theorem mulgrhm 14567
Description: The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgrhm.1  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
mulgrhm  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Distinct variable groups:    R, n    .x. , n    .1. ,
n
Allowed substitution hint:    F( n)

Proof of Theorem mulgrhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 14554 . 2  |-  ZZ  =  ( Base ` ring )
2 zring1 14559 . 2  |-  1  =  ( 1r ` ring )
3 mulgrhm.1 . 2  |-  .1.  =  ( 1r `  R )
4 zringmulr 14557 . 2  |-  x.  =  ( .r ` ring )
5 eqid 2229 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
6 zringring 14551 . . 3  |-ring  e.  Ring
76a1i 9 . 2  |-  ( R  e.  Ring  ->ring  e.  Ring )
8 id 19 . 2  |-  ( R  e.  Ring  ->  R  e. 
Ring )
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
10 oveq1 6007 . . . 4  |-  ( n  =  1  ->  (
n  .x.  .1.  )  =  ( 1  .x. 
.1.  ) )
11 1zzd 9469 . . . 4  |-  ( R  e.  Ring  ->  1  e.  ZZ )
12 eqid 2229 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
1312, 3ringidcl 13978 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
14 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
1512, 14mulg1 13661 . . . . . 6  |-  (  .1. 
e.  ( Base `  R
)  ->  ( 1 
.x.  .1.  )  =  .1.  )
1613, 15syl 14 . . . . 5  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  =  .1.  )
1716, 13eqeltrd 2306 . . . 4  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  e.  ( Base `  R )
)
189, 10, 11, 17fvmptd3 5727 . . 3  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  ( 1  .x.  .1.  ) )
1918, 16eqtrd 2262 . 2  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  .1.  )
20 ringgrp 13959 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2120adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Grp )
22 simprr 531 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
2313adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  .1.  e.  ( Base `  R )
)
2412, 14, 21, 22, 23mulgcld 13676 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( y  .x.  .1.  )  e.  (
Base `  R )
)
2512, 5, 3ringlidm 13981 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
y  .x.  .1.  )  e.  ( Base `  R
) )  ->  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2624, 25syldan 282 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  (  .1.  ( .r `  R ) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2726oveq2d 6016 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  (  .1.  ( .r `  R ) ( y  .x.  .1.  )
) )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
28 simpl 109 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Ring )
29 simprl 529 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
3012, 14, 5mulgass2 14016 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  .1.  e.  ( Base `  R
)  /\  ( y  .x.  .1.  )  e.  (
Base `  R )
) )  ->  (
( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R ) ( y 
.x.  .1.  ) )
) )
3128, 29, 23, 24, 30syl13anc 1273 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  .x.  .1.  )
( .r `  R
) ( y  .x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) ) ) )
3212, 14mulgass 13691 . . . . 5  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  ( Base `  R
) ) )  -> 
( ( x  x.  y )  .x.  .1.  )  =  ( x  .x.  ( y  .x.  .1.  ) ) )
3321, 29, 22, 23, 32syl13anc 1273 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
3427, 31, 333eqtr4rd 2273 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
35 oveq1 6007 . . . 4  |-  ( n  =  ( x  x.  y )  ->  (
n  .x.  .1.  )  =  ( ( x  x.  y )  .x.  .1.  ) )
36 zmulcl 9496 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3736adantl 277 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  x.  y )  e.  ZZ )
3812, 14, 21, 37, 23mulgcld 13676 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  e.  ( Base `  R )
)
399, 35, 37, 38fvmptd3 5727 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( x  x.  y
)  .x.  .1.  )
)
40 oveq1 6007 . . . . 5  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
4112, 14, 21, 29, 23mulgcld 13676 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  .1.  )  e.  (
Base `  R )
)
429, 40, 29, 41fvmptd3 5727 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  x )  =  ( x  .x.  .1.  )
)
43 oveq1 6007 . . . . 5  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
449, 43, 22, 24fvmptd3 5727 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  y )  =  ( y  .x.  .1.  )
)
4542, 44oveq12d 6018 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( F `  x )
( .r `  R
) ( F `  y ) )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
4634, 39, 453eqtr4d 2272 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( F `  x
) ( .r `  R ) ( F `
 y ) ) )
4714, 9, 12mulgghm2 14566 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  ( Base `  R
) )  ->  F  e.  (ring  GrpHom  R ) )
4820, 13, 47syl2anc 411 . 2  |-  ( R  e.  Ring  ->  F  e.  (ring  GrpHom  R ) )
491, 2, 3, 4, 5, 7, 8, 19, 46, 48isrhm2d 14123 1  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   1c1 7996    x. cmul 8000   ZZcz 9442   Basecbs 13027   .rcmulr 13106   Grpcgrp 13528  .gcmg 13651    GrpHom cghm 13772   1rcur 13917   Ringcrg 13954   RingHom crh 14108  ℤringczring 14548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-cj 11348  df-abs 11505  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-starv 13120  df-tset 13124  df-ple 13125  df-ds 13127  df-unif 13128  df-0g 13286  df-topgen 13288  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-grp 13531  df-minusg 13532  df-mulg 13652  df-subg 13702  df-ghm 13773  df-cmn 13818  df-mgp 13879  df-ur 13918  df-ring 13956  df-cring 13957  df-rhm 14110  df-subrg 14177  df-bl 14504  df-mopn 14505  df-fg 14507  df-metu 14508  df-cnfld 14515  df-zring 14549
This theorem is referenced by:  mulgrhm2  14568
  Copyright terms: Public domain W3C validator