| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgrhm | Unicode version | ||
| Description: The powers of the element
|
| Ref | Expression |
|---|---|
| mulgghm2.m |
|
| mulgghm2.f |
|
| mulgrhm.1 |
|
| Ref | Expression |
|---|---|
| mulgrhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringbas 14358 |
. 2
| |
| 2 | zring1 14363 |
. 2
| |
| 3 | mulgrhm.1 |
. 2
| |
| 4 | zringmulr 14361 |
. 2
| |
| 5 | eqid 2205 |
. 2
| |
| 6 | zringring 14355 |
. . 3
| |
| 7 | 6 | a1i 9 |
. 2
|
| 8 | id 19 |
. 2
| |
| 9 | mulgghm2.f |
. . . 4
| |
| 10 | oveq1 5951 |
. . . 4
| |
| 11 | 1zzd 9399 |
. . . 4
| |
| 12 | eqid 2205 |
. . . . . . 7
| |
| 13 | 12, 3 | ringidcl 13782 |
. . . . . 6
|
| 14 | mulgghm2.m |
. . . . . . 7
| |
| 15 | 12, 14 | mulg1 13465 |
. . . . . 6
|
| 16 | 13, 15 | syl 14 |
. . . . 5
|
| 17 | 16, 13 | eqeltrd 2282 |
. . . 4
|
| 18 | 9, 10, 11, 17 | fvmptd3 5673 |
. . 3
|
| 19 | 18, 16 | eqtrd 2238 |
. 2
|
| 20 | ringgrp 13763 |
. . . . . . . 8
| |
| 21 | 20 | adantr 276 |
. . . . . . 7
|
| 22 | simprr 531 |
. . . . . . 7
| |
| 23 | 13 | adantr 276 |
. . . . . . 7
|
| 24 | 12, 14, 21, 22, 23 | mulgcld 13480 |
. . . . . 6
|
| 25 | 12, 5, 3 | ringlidm 13785 |
. . . . . 6
|
| 26 | 24, 25 | syldan 282 |
. . . . 5
|
| 27 | 26 | oveq2d 5960 |
. . . 4
|
| 28 | simpl 109 |
. . . . 5
| |
| 29 | simprl 529 |
. . . . 5
| |
| 30 | 12, 14, 5 | mulgass2 13820 |
. . . . 5
|
| 31 | 28, 29, 23, 24, 30 | syl13anc 1252 |
. . . 4
|
| 32 | 12, 14 | mulgass 13495 |
. . . . 5
|
| 33 | 21, 29, 22, 23, 32 | syl13anc 1252 |
. . . 4
|
| 34 | 27, 31, 33 | 3eqtr4rd 2249 |
. . 3
|
| 35 | oveq1 5951 |
. . . 4
| |
| 36 | zmulcl 9426 |
. . . . 5
| |
| 37 | 36 | adantl 277 |
. . . 4
|
| 38 | 12, 14, 21, 37, 23 | mulgcld 13480 |
. . . 4
|
| 39 | 9, 35, 37, 38 | fvmptd3 5673 |
. . 3
|
| 40 | oveq1 5951 |
. . . . 5
| |
| 41 | 12, 14, 21, 29, 23 | mulgcld 13480 |
. . . . 5
|
| 42 | 9, 40, 29, 41 | fvmptd3 5673 |
. . . 4
|
| 43 | oveq1 5951 |
. . . . 5
| |
| 44 | 9, 43, 22, 24 | fvmptd3 5673 |
. . . 4
|
| 45 | 42, 44 | oveq12d 5962 |
. . 3
|
| 46 | 34, 39, 45 | 3eqtr4d 2248 |
. 2
|
| 47 | 14, 9, 12 | mulgghm2 14370 |
. . 3
|
| 48 | 20, 13, 47 | syl2anc 411 |
. 2
|
| 49 | 1, 2, 3, 4, 5, 7, 8, 19, 46, 48 | isrhm2d 13927 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-addf 8047 ax-mulf 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-map 6737 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-dec 9505 df-uz 9649 df-rp 9776 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-cj 11153 df-abs 11310 df-struct 12834 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-starv 12924 df-tset 12928 df-ple 12929 df-ds 12931 df-unif 12932 df-0g 13090 df-topgen 13092 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-mhm 13291 df-grp 13335 df-minusg 13336 df-mulg 13456 df-subg 13506 df-ghm 13577 df-cmn 13622 df-mgp 13683 df-ur 13722 df-ring 13760 df-cring 13761 df-rhm 13914 df-subrg 13981 df-bl 14308 df-mopn 14309 df-fg 14311 df-metu 14312 df-cnfld 14319 df-zring 14353 |
| This theorem is referenced by: mulgrhm2 14372 |
| Copyright terms: Public domain | W3C validator |