ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm Unicode version

Theorem mulgrhm 14342
Description: The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgrhm.1  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
mulgrhm  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Distinct variable groups:    R, n    .x. , n    .1. ,
n
Allowed substitution hint:    F( n)

Proof of Theorem mulgrhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 14329 . 2  |-  ZZ  =  ( Base ` ring )
2 zring1 14334 . 2  |-  1  =  ( 1r ` ring )
3 mulgrhm.1 . 2  |-  .1.  =  ( 1r `  R )
4 zringmulr 14332 . 2  |-  x.  =  ( .r ` ring )
5 eqid 2204 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
6 zringring 14326 . . 3  |-ring  e.  Ring
76a1i 9 . 2  |-  ( R  e.  Ring  ->ring  e.  Ring )
8 id 19 . 2  |-  ( R  e.  Ring  ->  R  e. 
Ring )
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
10 oveq1 5950 . . . 4  |-  ( n  =  1  ->  (
n  .x.  .1.  )  =  ( 1  .x. 
.1.  ) )
11 1zzd 9398 . . . 4  |-  ( R  e.  Ring  ->  1  e.  ZZ )
12 eqid 2204 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
1312, 3ringidcl 13753 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
14 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
1512, 14mulg1 13436 . . . . . 6  |-  (  .1. 
e.  ( Base `  R
)  ->  ( 1 
.x.  .1.  )  =  .1.  )
1613, 15syl 14 . . . . 5  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  =  .1.  )
1716, 13eqeltrd 2281 . . . 4  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  e.  ( Base `  R )
)
189, 10, 11, 17fvmptd3 5672 . . 3  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  ( 1  .x.  .1.  ) )
1918, 16eqtrd 2237 . 2  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  .1.  )
20 ringgrp 13734 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2120adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Grp )
22 simprr 531 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
2313adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  .1.  e.  ( Base `  R )
)
2412, 14, 21, 22, 23mulgcld 13451 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( y  .x.  .1.  )  e.  (
Base `  R )
)
2512, 5, 3ringlidm 13756 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
y  .x.  .1.  )  e.  ( Base `  R
) )  ->  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2624, 25syldan 282 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  (  .1.  ( .r `  R ) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
2726oveq2d 5959 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  (  .1.  ( .r `  R ) ( y  .x.  .1.  )
) )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
28 simpl 109 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Ring )
29 simprl 529 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
3012, 14, 5mulgass2 13791 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  .1.  e.  ( Base `  R
)  /\  ( y  .x.  .1.  )  e.  (
Base `  R )
) )  ->  (
( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R ) ( y 
.x.  .1.  ) )
) )
3128, 29, 23, 24, 30syl13anc 1251 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  .x.  .1.  )
( .r `  R
) ( y  .x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) ) ) )
3212, 14mulgass 13466 . . . . 5  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  ( Base `  R
) ) )  -> 
( ( x  x.  y )  .x.  .1.  )  =  ( x  .x.  ( y  .x.  .1.  ) ) )
3321, 29, 22, 23, 32syl13anc 1251 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
3427, 31, 333eqtr4rd 2248 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
35 oveq1 5950 . . . 4  |-  ( n  =  ( x  x.  y )  ->  (
n  .x.  .1.  )  =  ( ( x  x.  y )  .x.  .1.  ) )
36 zmulcl 9425 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
3736adantl 277 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  x.  y )  e.  ZZ )
3812, 14, 21, 37, 23mulgcld 13451 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  e.  ( Base `  R )
)
399, 35, 37, 38fvmptd3 5672 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( x  x.  y
)  .x.  .1.  )
)
40 oveq1 5950 . . . . 5  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
4112, 14, 21, 29, 23mulgcld 13451 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  .1.  )  e.  (
Base `  R )
)
429, 40, 29, 41fvmptd3 5672 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  x )  =  ( x  .x.  .1.  )
)
43 oveq1 5950 . . . . 5  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
449, 43, 22, 24fvmptd3 5672 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  y )  =  ( y  .x.  .1.  )
)
4542, 44oveq12d 5961 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( F `  x )
( .r `  R
) ( F `  y ) )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
4634, 39, 453eqtr4d 2247 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( F `  x
) ( .r `  R ) ( F `
 y ) ) )
4714, 9, 12mulgghm2 14341 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  ( Base `  R
) )  ->  F  e.  (ring  GrpHom  R ) )
4820, 13, 47syl2anc 411 . 2  |-  ( R  e.  Ring  ->  F  e.  (ring  GrpHom  R ) )
491, 2, 3, 4, 5, 7, 8, 19, 46, 48isrhm2d 13898 1  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    |-> cmpt 4104   ` cfv 5270  (class class class)co 5943   1c1 7925    x. cmul 7929   ZZcz 9371   Basecbs 12803   .rcmulr 12881   Grpcgrp 13303  .gcmg 13426    GrpHom cghm 13547   1rcur 13692   Ringcrg 13729   RingHom crh 13883  ℤringczring 14323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-addf 8046  ax-mulf 8047
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-9 9101  df-n0 9295  df-z 9372  df-dec 9504  df-uz 9648  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-cj 11124  df-abs 11281  df-struct 12805  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mulr 12894  df-starv 12895  df-tset 12899  df-ple 12900  df-ds 12902  df-unif 12903  df-0g 13061  df-topgen 13063  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-mhm 13262  df-grp 13306  df-minusg 13307  df-mulg 13427  df-subg 13477  df-ghm 13548  df-cmn 13593  df-mgp 13654  df-ur 13693  df-ring 13731  df-cring 13732  df-rhm 13885  df-subrg 13952  df-bl 14279  df-mopn 14280  df-fg 14282  df-metu 14283  df-cnfld 14290  df-zring 14324
This theorem is referenced by:  mulgrhm2  14343
  Copyright terms: Public domain W3C validator