ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgrhm2 Unicode version

Theorem mulgrhm2 14109
Description: The powers of the element  1 give the unique ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgrhm.1  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
mulgrhm2  |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
Distinct variable groups:    R, n    .x. , n    .1. ,
n
Allowed substitution hint:    F( n)

Proof of Theorem mulgrhm2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 zringbas 14095 . . . . . . . . . 10  |-  ZZ  =  ( Base ` ring )
2 eqid 2193 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
31, 2rhmf 13662 . . . . . . . . 9  |-  ( f  e.  (ring RingHom  R )  ->  f : ZZ --> ( Base `  R
) )
43adantl 277 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  -> 
f : ZZ --> ( Base `  R ) )
54feqmptd 5611 . . . . . . 7  |-  ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  -> 
f  =  ( n  e.  ZZ  |->  ( f `
 n ) ) )
6 rhmghm 13661 . . . . . . . . . . 11  |-  ( f  e.  (ring RingHom  R )  ->  f  e.  (ring  GrpHom  R ) )
76ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  f  e.  (ring  GrpHom  R ) )
8 simpr 110 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
9 1zzd 9347 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  1  e.  ZZ )
10 eqid 2193 . . . . . . . . . . 11  |-  (.g ` ring )  =  (.g ` ring )
11 mulgghm2.m . . . . . . . . . . 11  |-  .x.  =  (.g
`  R )
121, 10, 11ghmmulg 13329 . . . . . . . . . 10  |-  ( ( f  e.  (ring  GrpHom  R )  /\  n  e.  ZZ  /\  1  e.  ZZ )  ->  ( f `  ( n (.g ` ring ) 1 ) )  =  ( n  .x.  ( f `  1
) ) )
137, 8, 9, 12syl3anc 1249 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  ( f `  ( n (.g ` ring ) 1 ) )  =  ( n  .x.  ( f `  1
) ) )
14 ax-1cn 7967 . . . . . . . . . . . . 13  |-  1  e.  CC
15 cnfldmulg 14075 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  1  e.  CC )  ->  ( n (.g ` fld ) 1 )  =  ( n  x.  1 ) )
1614, 15mpan2 425 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
n (.g ` fld ) 1 )  =  ( n  x.  1 ) )
17 1z 9346 . . . . . . . . . . . . 13  |-  1  e.  ZZ
1816adantr 276 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ZZ  /\  1  e.  ZZ )  ->  ( n (.g ` fld ) 1 )  =  ( n  x.  1 ) )
19 zringmulg 14097 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ZZ  /\  1  e.  ZZ )  ->  ( n (.g ` ring ) 1 )  =  ( n  x.  1 ) )
2018, 19eqtr4d 2229 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  1  e.  ZZ )  ->  ( n (.g ` fld ) 1 )  =  ( n (.g ` ring ) 1 ) )
2117, 20mpan2 425 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
n (.g ` fld ) 1 )  =  ( n (.g ` ring ) 1 ) )
22 zcn 9325 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  CC )
2322mulridd 8038 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
n  x.  1 )  =  n )
2416, 21, 233eqtr3d 2234 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
n (.g ` ring ) 1 )  =  n )
2524adantl 277 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  ( n (.g ` ring ) 1 )  =  n )
2625fveq2d 5559 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  ( f `  ( n (.g ` ring ) 1 ) )  =  ( f `  n ) )
27 zring1 14100 . . . . . . . . . . . 12  |-  1  =  ( 1r ` ring )
28 mulgrhm.1 . . . . . . . . . . . 12  |-  .1.  =  ( 1r `  R )
2927, 28rhm1 13666 . . . . . . . . . . 11  |-  ( f  e.  (ring RingHom  R )  ->  (
f `  1 )  =  .1.  )
3029ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  ( f ` 
1 )  =  .1.  )
3130oveq2d 5935 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  ( n  .x.  ( f `  1
) )  =  ( n  .x.  .1.  )
)
3213, 26, 313eqtr3d 2234 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  /\  n  e.  ZZ )  ->  ( f `  n )  =  ( n  .x.  .1.  )
)
3332mpteq2dva 4120 . . . . . . 7  |-  ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  -> 
( n  e.  ZZ  |->  ( f `  n
) )  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
) )
345, 33eqtrd 2226 . . . . . 6  |-  ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  -> 
f  =  ( n  e.  ZZ  |->  ( n 
.x.  .1.  ) )
)
35 mulgghm2.f . . . . . 6  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
3634, 35eqtr4di 2244 . . . . 5  |-  ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  -> 
f  =  F )
37 velsn 3636 . . . . 5  |-  ( f  e.  { F }  <->  f  =  F )
3836, 37sylibr 134 . . . 4  |-  ( ( R  e.  Ring  /\  f  e.  (ring RingHom  R ) )  -> 
f  e.  { F } )
3938ex 115 . . 3  |-  ( R  e.  Ring  ->  ( f  e.  (ring RingHom  R )  ->  f  e.  { F } ) )
4039ssrdv 3186 . 2  |-  ( R  e.  Ring  ->  (ring RingHom  R )  C_  { F } )
4111, 35, 28mulgrhm 14108 . . 3  |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
4241snssd 3764 . 2  |-  ( R  e.  Ring  ->  { F }  C_  (ring RingHom  R ) )
4340, 42eqssd 3197 1  |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {csn 3619    |-> cmpt 4091   -->wf 5251   ` cfv 5255  (class class class)co 5919   CCcc 7872   1c1 7875    x. cmul 7879   ZZcz 9320   Basecbs 12621  .gcmg 13192    GrpHom cghm 13313   1rcur 13458   Ringcrg 13495   RingHom crh 13649  ℂfldccnfld 14055  ℤringczring 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-cj 10989  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-topgen 12874  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-minusg 13079  df-mulg 13193  df-subg 13243  df-ghm 13314  df-cmn 13359  df-mgp 13420  df-ur 13459  df-ring 13497  df-cring 13498  df-rhm 13651  df-subrg 13718  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-zring 14090
This theorem is referenced by:  zrhval2  14118  zrhrhmb  14121
  Copyright terms: Public domain W3C validator