![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > declth | GIF version |
Description: Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
declt.a | ⊢ 𝐴 ∈ ℕ0 |
declt.b | ⊢ 𝐵 ∈ ℕ0 |
declth.c | ⊢ 𝐶 ∈ ℕ0 |
declth.d | ⊢ 𝐷 ∈ ℕ0 |
declth.e | ⊢ 𝐶 ≤ 9 |
declth.l | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
declth | ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | declt.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | declt.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | declth.c | . 2 ⊢ 𝐶 ∈ ℕ0 | |
4 | declth.d | . 2 ⊢ 𝐷 ∈ ℕ0 | |
5 | declth.e | . . 3 ⊢ 𝐶 ≤ 9 | |
6 | 3, 5 | le9lt10 9474 | . 2 ⊢ 𝐶 < ;10 |
7 | declth.l | . 2 ⊢ 𝐴 < 𝐵 | |
8 | 1, 2, 3, 4, 6, 7 | decltc 9476 | 1 ⊢ ;𝐴𝐶 < ;𝐵𝐷 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 class class class wbr 4029 < clt 8054 ≤ cle 8055 9c9 9040 ℕ0cn0 9240 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 |
This theorem is referenced by: 3declth 9479 decleh 9482 |
Copyright terms: Public domain | W3C validator |