| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrmuld | GIF version | ||
| Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrvald.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| dvdsrvald.2 | ⊢ (𝜑 → ∥ = (∥r‘𝑅)) |
| dvdsrvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| dvdsrvald.3 | ⊢ (𝜑 → · = (.r‘𝑅)) |
| dvdsr2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrmuld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| dvdsrmuld | ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | dvdsrmuld.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | eqid 2206 | . . 3 ⊢ (𝑌 · 𝑋) = (𝑌 · 𝑋) | |
| 4 | oveq1 5958 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋)) | |
| 5 | 4 | eqeq1d 2215 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋))) |
| 6 | 5 | rspcev 2878 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 7 | 2, 3, 6 | sylancl 413 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 8 | dvdsrvald.1 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 9 | dvdsrvald.2 | . . 3 ⊢ (𝜑 → ∥ = (∥r‘𝑅)) | |
| 10 | dvdsrvald.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 11 | dvdsrvald.3 | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 12 | 8, 9, 10, 11 | dvdsrd 13900 | . 2 ⊢ (𝜑 → (𝑋 ∥ (𝑌 · 𝑋) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))) |
| 13 | 1, 7, 12 | mpbir2and 947 | 1 ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 .rcmulr 12954 SRingcsrg 13769 ∥rcdsr 13892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-mgp 13727 df-srg 13770 df-dvdsr 13895 |
| This theorem is referenced by: dvdsrid 13906 dvdsrtr 13907 dvdsrmul1 13908 dvdsrneg 13909 unitmulclb 13920 unitgrp 13922 subrguss 14042 subrgunit 14045 |
| Copyright terms: Public domain | W3C validator |