| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrmuld | GIF version | ||
| Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrvald.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| dvdsrvald.2 | ⊢ (𝜑 → ∥ = (∥r‘𝑅)) |
| dvdsrvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| dvdsrvald.3 | ⊢ (𝜑 → · = (.r‘𝑅)) |
| dvdsr2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrmuld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| dvdsrmuld | ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | dvdsrmuld.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | eqid 2196 | . . 3 ⊢ (𝑌 · 𝑋) = (𝑌 · 𝑋) | |
| 4 | oveq1 5929 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋)) | |
| 5 | 4 | eqeq1d 2205 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋))) |
| 6 | 5 | rspcev 2868 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 7 | 2, 3, 6 | sylancl 413 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 8 | dvdsrvald.1 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 9 | dvdsrvald.2 | . . 3 ⊢ (𝜑 → ∥ = (∥r‘𝑅)) | |
| 10 | dvdsrvald.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 11 | dvdsrvald.3 | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 12 | 8, 9, 10, 11 | dvdsrd 13650 | . 2 ⊢ (𝜑 → (𝑋 ∥ (𝑌 · 𝑋) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))) |
| 13 | 1, 7, 12 | mpbir2and 946 | 1 ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 .rcmulr 12756 SRingcsrg 13519 ∥rcdsr 13642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mgp 13477 df-srg 13520 df-dvdsr 13645 |
| This theorem is referenced by: dvdsrid 13656 dvdsrtr 13657 dvdsrmul1 13658 dvdsrneg 13659 unitmulclb 13670 unitgrp 13672 subrguss 13792 subrgunit 13795 |
| Copyright terms: Public domain | W3C validator |