| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrmuld | GIF version | ||
| Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsrvald.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| dvdsrvald.2 | ⊢ (𝜑 → ∥ = (∥r‘𝑅)) |
| dvdsrvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| dvdsrvald.3 | ⊢ (𝜑 → · = (.r‘𝑅)) |
| dvdsr2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrmuld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| dvdsrmuld | ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | dvdsrmuld.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | eqid 2209 | . . 3 ⊢ (𝑌 · 𝑋) = (𝑌 · 𝑋) | |
| 4 | oveq1 5981 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋)) | |
| 5 | 4 | eqeq1d 2218 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋))) |
| 6 | 5 | rspcev 2887 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 7 | 2, 3, 6 | sylancl 413 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
| 8 | dvdsrvald.1 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 9 | dvdsrvald.2 | . . 3 ⊢ (𝜑 → ∥ = (∥r‘𝑅)) | |
| 10 | dvdsrvald.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 11 | dvdsrvald.3 | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
| 12 | 8, 9, 10, 11 | dvdsrd 14023 | . 2 ⊢ (𝜑 → (𝑋 ∥ (𝑌 · 𝑋) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))) |
| 13 | 1, 7, 12 | mpbir2and 949 | 1 ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 .rcmulr 13077 SRingcsrg 13892 ∥rcdsr 14015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-mgp 13850 df-srg 13893 df-dvdsr 14018 |
| This theorem is referenced by: dvdsrid 14029 dvdsrtr 14030 dvdsrmul1 14031 dvdsrneg 14032 unitmulclb 14043 unitgrp 14045 subrguss 14165 subrgunit 14168 |
| Copyright terms: Public domain | W3C validator |