![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsrmuld | GIF version |
Description: A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsrvald.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
dvdsrvald.2 | ⊢ (𝜑 → ∥ = (∥r‘𝑅)) |
dvdsrvald.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
dvdsrvald.3 | ⊢ (𝜑 → · = (.r‘𝑅)) |
dvdsr2d.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dvdsrmuld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
dvdsrmuld | ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr2d.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | dvdsrmuld.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | eqid 2177 | . . 3 ⊢ (𝑌 · 𝑋) = (𝑌 · 𝑋) | |
4 | oveq1 5885 | . . . . 5 ⊢ (𝑧 = 𝑌 → (𝑧 · 𝑋) = (𝑌 · 𝑋)) | |
5 | 4 | eqeq1d 2186 | . . . 4 ⊢ (𝑧 = 𝑌 → ((𝑧 · 𝑋) = (𝑌 · 𝑋) ↔ (𝑌 · 𝑋) = (𝑌 · 𝑋))) |
6 | 5 | rspcev 2843 | . . 3 ⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 · 𝑋) = (𝑌 · 𝑋)) → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
7 | 2, 3, 6 | sylancl 413 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)) |
8 | dvdsrvald.1 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
9 | dvdsrvald.2 | . . 3 ⊢ (𝜑 → ∥ = (∥r‘𝑅)) | |
10 | dvdsrvald.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
11 | dvdsrvald.3 | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
12 | 8, 9, 10, 11 | dvdsrd 13274 | . 2 ⊢ (𝜑 → (𝑋 ∥ (𝑌 · 𝑋) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = (𝑌 · 𝑋)))) |
13 | 1, 7, 12 | mpbir2and 944 | 1 ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 Basecbs 12465 .rcmulr 12540 SRingcsrg 13157 ∥rcdsr 13266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12782 df-sgrp 12815 df-mnd 12825 df-mgp 13142 df-srg 13158 df-dvdsr 13269 |
This theorem is referenced by: dvdsrid 13280 dvdsrtr 13281 dvdsrmul1 13282 dvdsrneg 13283 unitmulclb 13294 unitgrp 13296 subrguss 13368 subrgunit 13371 |
Copyright terms: Public domain | W3C validator |