ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplsubgfilemm GIF version

Theorem mplsubgfilemm 14332
Description: Lemma for mplsubgfi 14335. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼 ∈ Fin)
mplsubg.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mplsubgfilemm (𝜑 → ∃𝑗 𝑗𝑈)
Distinct variable groups:   𝑆,𝑗   𝑈,𝑗
Allowed substitution hints:   𝜑(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝐼(𝑗)

Proof of Theorem mplsubgfilemm
Dummy variables 𝑎 𝑏 𝑘 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubg.i . . . . 5 (𝜑𝐼 ∈ Fin)
3 mplsubg.r . . . . 5 (𝜑𝑅 ∈ Grp)
4 eqid 2196 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 eqid 2196 . . . . 5 (0g𝑅) = (0g𝑅)
6 eqid 2196 . . . . 5 (0g𝑆) = (0g𝑆)
71, 2, 3, 4, 5, 6psr0 14320 . . . 4 (𝜑 → (0g𝑆) = ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
8 eqid 2196 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
91, 2, 3, 4, 5, 8psr0cl 14315 . . . 4 (𝜑 → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (Base‘𝑆))
107, 9eqeltrd 2273 . . 3 (𝜑 → (0g𝑆) ∈ (Base‘𝑆))
11 0nn0 9283 . . . . . . 7 0 ∈ ℕ0
1211a1i 9 . . . . . 6 ((𝜑𝑛𝐼) → 0 ∈ ℕ0)
1312fmpttd 5720 . . . . 5 (𝜑 → (𝑛𝐼 ↦ 0):𝐼⟶ℕ0)
14 nn0ex 9274 . . . . . . 7 0 ∈ V
1514a1i 9 . . . . . 6 (𝜑 → ℕ0 ∈ V)
1615, 2elmapd 6730 . . . . 5 (𝜑 → ((𝑛𝐼 ↦ 0) ∈ (ℕ0𝑚 𝐼) ↔ (𝑛𝐼 ↦ 0):𝐼⟶ℕ0))
1713, 16mpbird 167 . . . 4 (𝜑 → (𝑛𝐼 ↦ 0) ∈ (ℕ0𝑚 𝐼))
187fveq1d 5563 . . . . . . . 8 (𝜑 → ((0g𝑆)‘𝑏) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏))
1918adantr 276 . . . . . . 7 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((0g𝑆)‘𝑏) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏))
20 eqid 2196 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
2120, 5grpidcl 13233 . . . . . . . . . 10 (𝑅 ∈ Grp → (0g𝑅) ∈ (Base‘𝑅))
223, 21syl 14 . . . . . . . . 9 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2322adantr 276 . . . . . . . 8 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (0g𝑅) ∈ (Base‘𝑅))
24 simpr 110 . . . . . . . . 9 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → 𝑏 ∈ (ℕ0𝑚 𝐼))
254psrbagfi 14307 . . . . . . . . . . 11 (𝐼 ∈ Fin → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0𝑚 𝐼))
262, 25syl 14 . . . . . . . . . 10 (𝜑 → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0𝑚 𝐼))
2726adantr 276 . . . . . . . . 9 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0𝑚 𝐼))
2824, 27eleqtrrd 2276 . . . . . . . 8 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → 𝑏 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
29 fvconst2g 5779 . . . . . . . 8 (((0g𝑅) ∈ (Base‘𝑅) ∧ 𝑏 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏) = (0g𝑅))
3023, 28, 29syl2anc 411 . . . . . . 7 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏) = (0g𝑅))
3119, 30eqtrd 2229 . . . . . 6 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((0g𝑆)‘𝑏) = (0g𝑅))
3231a1d 22 . . . . 5 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
3332ralrimiva 2570 . . . 4 (𝜑 → ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
34 fveq1 5560 . . . . . . 7 (𝑎 = (𝑛𝐼 ↦ 0) → (𝑎𝑘) = ((𝑛𝐼 ↦ 0)‘𝑘))
3534breq1d 4044 . . . . . 6 (𝑎 = (𝑛𝐼 ↦ 0) → ((𝑎𝑘) < (𝑏𝑘) ↔ ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘)))
3635ralbidv 2497 . . . . 5 (𝑎 = (𝑛𝐼 ↦ 0) → (∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) ↔ ∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘)))
3736rspceaimv 2876 . . . 4 (((𝑛𝐼 ↦ 0) ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅))) → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
3817, 33, 37syl2anc 411 . . 3 (𝜑 → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
39 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
40 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
4139, 1, 8, 5, 40mplelbascoe 14326 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → ((0g𝑆) ∈ 𝑈 ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))))
422, 3, 41syl2anc 411 . . 3 (𝜑 → ((0g𝑆) ∈ 𝑈 ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))))
4310, 38, 42mpbir2and 946 . 2 (𝜑 → (0g𝑆) ∈ 𝑈)
44 eleq1 2259 . . 3 (𝑗 = (0g𝑆) → (𝑗𝑈 ↔ (0g𝑆) ∈ 𝑈))
4544spcegv 2852 . 2 ((0g𝑆) ∈ 𝑈 → ((0g𝑆) ∈ 𝑈 → ∃𝑗 𝑗𝑈))
4643, 43, 45sylc 62 1 (𝜑 → ∃𝑗 𝑗𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  {csn 3623   class class class wbr 4034  cmpt 4095   × cxp 4662  ccnv 4663  cima 4667  wf 5255  cfv 5259  (class class class)co 5925  𝑚 cmap 6716  Fincfn 6808  0cc0 7898   < clt 8080  cn 9009  0cn0 9268  Basecbs 12705  0gc0g 12960  Grpcgrp 13204   mPwSer cmps 14295   mPoly cmpl 14296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-1o 6483  df-er 6601  df-map 6718  df-ixp 6767  df-en 6809  df-fin 6811  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-fz 10103  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-hom 12806  df-cco 12807  df-rest 12945  df-topn 12946  df-0g 12962  df-topgen 12964  df-pt 12965  df-prds 12971  df-pws 12994  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-psr 14297  df-mplcoe 14298
This theorem is referenced by:  mplsubgfi  14335
  Copyright terms: Public domain W3C validator