| Step | Hyp | Ref
| Expression |
| 1 | | mplsubg.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | mplsubg.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 3 | | mplsubg.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 4 | | eqid 2196 |
. . . . 5
⊢ {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 5 | | eqid 2196 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 6 | | eqid 2196 |
. . . . 5
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 7 | 1, 2, 3, 4, 5, 6 | psr0 14320 |
. . . 4
⊢ (𝜑 → (0g‘𝑆) = ({𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
| 8 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 9 | 1, 2, 3, 4, 5, 8 | psr0cl 14315 |
. . . 4
⊢ (𝜑 → ({𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})
∈ (Base‘𝑆)) |
| 10 | 7, 9 | eqeltrd 2273 |
. . 3
⊢ (𝜑 → (0g‘𝑆) ∈ (Base‘𝑆)) |
| 11 | | 0nn0 9283 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
| 12 | 11 | a1i 9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 ∈
ℕ0) |
| 13 | 12 | fmpttd 5720 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0) |
| 14 | | nn0ex 9274 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 15 | 14 | a1i 9 |
. . . . . 6
⊢ (𝜑 → ℕ0 ∈
V) |
| 16 | 15, 2 | elmapd 6730 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ 𝐼 ↦ 0) ∈ (ℕ0
↑𝑚 𝐼) ↔ (𝑛 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0)) |
| 17 | 13, 16 | mpbird 167 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ 0) ∈ (ℕ0
↑𝑚 𝐼)) |
| 18 | 7 | fveq1d 5563 |
. . . . . . . 8
⊢ (𝜑 →
((0g‘𝑆)‘𝑏) = (({𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘𝑏)) |
| 19 | 18 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((0g‘𝑆)‘𝑏) = (({𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘𝑏)) |
| 20 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 21 | 20, 5 | grpidcl 13233 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Grp →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 22 | 3, 21 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 23 | 22 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 24 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) |
| 25 | 4 | psrbagfi 14307 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ Fin → {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} =
(ℕ0 ↑𝑚 𝐼)) |
| 26 | 2, 25 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} =
(ℕ0 ↑𝑚 𝐼)) |
| 27 | 26 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} =
(ℕ0 ↑𝑚 𝐼)) |
| 28 | 24, 27 | eleqtrrd 2276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑏 ∈ {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin}) |
| 29 | | fvconst2g 5779 |
. . . . . . . 8
⊢
(((0g‘𝑅) ∈ (Base‘𝑅) ∧ 𝑏 ∈ {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) →
(({𝑓 ∈
(ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘𝑏) = (0g‘𝑅)) |
| 30 | 23, 28, 29 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (({𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘𝑏) = (0g‘𝑅)) |
| 31 | 19, 30 | eqtrd 2229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅)) |
| 32 | 31 | a1d 22 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ 0)‘𝑘) < (𝑏‘𝑘) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅))) |
| 33 | 32 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ 0)‘𝑘) < (𝑏‘𝑘) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅))) |
| 34 | | fveq1 5560 |
. . . . . . 7
⊢ (𝑎 = (𝑛 ∈ 𝐼 ↦ 0) → (𝑎‘𝑘) = ((𝑛 ∈ 𝐼 ↦ 0)‘𝑘)) |
| 35 | 34 | breq1d 4044 |
. . . . . 6
⊢ (𝑎 = (𝑛 ∈ 𝐼 ↦ 0) → ((𝑎‘𝑘) < (𝑏‘𝑘) ↔ ((𝑛 ∈ 𝐼 ↦ 0)‘𝑘) < (𝑏‘𝑘))) |
| 36 | 35 | ralbidv 2497 |
. . . . 5
⊢ (𝑎 = (𝑛 ∈ 𝐼 ↦ 0) → (∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ 0)‘𝑘) < (𝑏‘𝑘))) |
| 37 | 36 | rspceaimv 2876 |
. . . 4
⊢ (((𝑛 ∈ 𝐼 ↦ 0) ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 ((𝑛 ∈ 𝐼 ↦ 0)‘𝑘) < (𝑏‘𝑘) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅))) → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅))) |
| 38 | 17, 33, 37 | syl2anc 411 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅))) |
| 39 | | mplsubg.p |
. . . . 5
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 40 | | mplsubg.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
| 41 | 39, 1, 8, 5, 40 | mplelbascoe 14326 |
. . . 4
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) →
((0g‘𝑆)
∈ 𝑈 ↔
((0g‘𝑆)
∈ (Base‘𝑆) ∧
∃𝑎 ∈
(ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅))))) |
| 42 | 2, 3, 41 | syl2anc 411 |
. . 3
⊢ (𝜑 →
((0g‘𝑆)
∈ 𝑈 ↔
((0g‘𝑆)
∈ (Base‘𝑆) ∧
∃𝑎 ∈
(ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((0g‘𝑆)‘𝑏) = (0g‘𝑅))))) |
| 43 | 10, 38, 42 | mpbir2and 946 |
. 2
⊢ (𝜑 → (0g‘𝑆) ∈ 𝑈) |
| 44 | | eleq1 2259 |
. . 3
⊢ (𝑗 = (0g‘𝑆) → (𝑗 ∈ 𝑈 ↔ (0g‘𝑆) ∈ 𝑈)) |
| 45 | 44 | spcegv 2852 |
. 2
⊢
((0g‘𝑆) ∈ 𝑈 → ((0g‘𝑆) ∈ 𝑈 → ∃𝑗 𝑗 ∈ 𝑈)) |
| 46 | 43, 43, 45 | sylc 62 |
1
⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈) |