ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplsubgfilemm GIF version

Theorem mplsubgfilemm 14504
Description: Lemma for mplsubgfi 14507. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼 ∈ Fin)
mplsubg.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mplsubgfilemm (𝜑 → ∃𝑗 𝑗𝑈)
Distinct variable groups:   𝑆,𝑗   𝑈,𝑗
Allowed substitution hints:   𝜑(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝐼(𝑗)

Proof of Theorem mplsubgfilemm
Dummy variables 𝑎 𝑏 𝑘 𝑛 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 mplsubg.i . . . . 5 (𝜑𝐼 ∈ Fin)
3 mplsubg.r . . . . 5 (𝜑𝑅 ∈ Grp)
4 eqid 2206 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 eqid 2206 . . . . 5 (0g𝑅) = (0g𝑅)
6 eqid 2206 . . . . 5 (0g𝑆) = (0g𝑆)
71, 2, 3, 4, 5, 6psr0 14492 . . . 4 (𝜑 → (0g𝑆) = ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}))
8 eqid 2206 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
91, 2, 3, 4, 5, 8psr0cl 14487 . . . 4 (𝜑 → ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)}) ∈ (Base‘𝑆))
107, 9eqeltrd 2283 . . 3 (𝜑 → (0g𝑆) ∈ (Base‘𝑆))
11 0nn0 9317 . . . . . . 7 0 ∈ ℕ0
1211a1i 9 . . . . . 6 ((𝜑𝑛𝐼) → 0 ∈ ℕ0)
1312fmpttd 5742 . . . . 5 (𝜑 → (𝑛𝐼 ↦ 0):𝐼⟶ℕ0)
14 nn0ex 9308 . . . . . . 7 0 ∈ V
1514a1i 9 . . . . . 6 (𝜑 → ℕ0 ∈ V)
1615, 2elmapd 6756 . . . . 5 (𝜑 → ((𝑛𝐼 ↦ 0) ∈ (ℕ0𝑚 𝐼) ↔ (𝑛𝐼 ↦ 0):𝐼⟶ℕ0))
1713, 16mpbird 167 . . . 4 (𝜑 → (𝑛𝐼 ↦ 0) ∈ (ℕ0𝑚 𝐼))
187fveq1d 5585 . . . . . . . 8 (𝜑 → ((0g𝑆)‘𝑏) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏))
1918adantr 276 . . . . . . 7 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((0g𝑆)‘𝑏) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏))
20 eqid 2206 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
2120, 5grpidcl 13405 . . . . . . . . . 10 (𝑅 ∈ Grp → (0g𝑅) ∈ (Base‘𝑅))
223, 21syl 14 . . . . . . . . 9 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
2322adantr 276 . . . . . . . 8 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (0g𝑅) ∈ (Base‘𝑅))
24 simpr 110 . . . . . . . . 9 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → 𝑏 ∈ (ℕ0𝑚 𝐼))
254psrbagfi 14479 . . . . . . . . . . 11 (𝐼 ∈ Fin → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0𝑚 𝐼))
262, 25syl 14 . . . . . . . . . 10 (𝜑 → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0𝑚 𝐼))
2726adantr 276 . . . . . . . . 9 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0𝑚 𝐼))
2824, 27eleqtrrd 2286 . . . . . . . 8 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → 𝑏 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
29 fvconst2g 5805 . . . . . . . 8 (((0g𝑅) ∈ (Base‘𝑅) ∧ 𝑏 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏) = (0g𝑅))
3023, 28, 29syl2anc 411 . . . . . . 7 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {(0g𝑅)})‘𝑏) = (0g𝑅))
3119, 30eqtrd 2239 . . . . . 6 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((0g𝑆)‘𝑏) = (0g𝑅))
3231a1d 22 . . . . 5 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
3332ralrimiva 2580 . . . 4 (𝜑 → ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
34 fveq1 5582 . . . . . . 7 (𝑎 = (𝑛𝐼 ↦ 0) → (𝑎𝑘) = ((𝑛𝐼 ↦ 0)‘𝑘))
3534breq1d 4057 . . . . . 6 (𝑎 = (𝑛𝐼 ↦ 0) → ((𝑎𝑘) < (𝑏𝑘) ↔ ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘)))
3635ralbidv 2507 . . . . 5 (𝑎 = (𝑛𝐼 ↦ 0) → (∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) ↔ ∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘)))
3736rspceaimv 2886 . . . 4 (((𝑛𝐼 ↦ 0) ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 ((𝑛𝐼 ↦ 0)‘𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅))) → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
3817, 33, 37syl2anc 411 . . 3 (𝜑 → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))
39 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
40 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
4139, 1, 8, 5, 40mplelbascoe 14498 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → ((0g𝑆) ∈ 𝑈 ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))))
422, 3, 41syl2anc 411 . . 3 (𝜑 → ((0g𝑆) ∈ 𝑈 ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((0g𝑆)‘𝑏) = (0g𝑅)))))
4310, 38, 42mpbir2and 947 . 2 (𝜑 → (0g𝑆) ∈ 𝑈)
44 eleq1 2269 . . 3 (𝑗 = (0g𝑆) → (𝑗𝑈 ↔ (0g𝑆) ∈ 𝑈))
4544spcegv 2862 . 2 ((0g𝑆) ∈ 𝑈 → ((0g𝑆) ∈ 𝑈 → ∃𝑗 𝑗𝑈))
4643, 43, 45sylc 62 1 (𝜑 → ∃𝑗 𝑗𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  {crab 2489  Vcvv 2773  {csn 3634   class class class wbr 4047  cmpt 4109   × cxp 4677  ccnv 4678  cima 4682  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  Fincfn 6834  0cc0 7932   < clt 8114  cn 9043  0cn0 9302  Basecbs 12876  0gc0g 13132  Grpcgrp 13376   mPwSer cmps 14467   mPoly cmpl 14468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-1o 6509  df-er 6627  df-map 6744  df-ixp 6793  df-en 6835  df-fin 6837  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-hom 12977  df-cco 12978  df-rest 13117  df-topn 13118  df-0g 13134  df-topgen 13136  df-pt 13137  df-prds 13143  df-pws 13166  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-psr 14469  df-mplcoe 14470
This theorem is referenced by:  mplsubgfi  14507
  Copyright terms: Public domain W3C validator