![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodfopnelem2 | GIF version |
Description: Lemma 2 for lmodfopne 13421. (Contributed by AV, 2-Oct-2021.) |
Ref | Expression |
---|---|
lmodfopne.t | β’ Β· = ( Β·sf βπ) |
lmodfopne.a | β’ + = (+πβπ) |
lmodfopne.v | β’ π = (Baseβπ) |
lmodfopne.s | β’ π = (Scalarβπ) |
lmodfopne.k | β’ πΎ = (Baseβπ) |
lmodfopne.0 | β’ 0 = (0gβπ) |
lmodfopne.1 | β’ 1 = (1rβπ) |
Ref | Expression |
---|---|
lmodfopnelem2 | β’ ((π β LMod β§ + = Β· ) β ( 0 β π β§ 1 β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodfopne.t | . . . . 5 β’ Β· = ( Β·sf βπ) | |
2 | lmodfopne.a | . . . . 5 β’ + = (+πβπ) | |
3 | lmodfopne.v | . . . . 5 β’ π = (Baseβπ) | |
4 | lmodfopne.s | . . . . 5 β’ π = (Scalarβπ) | |
5 | lmodfopne.k | . . . . 5 β’ πΎ = (Baseβπ) | |
6 | 1, 2, 3, 4, 5 | lmodfopnelem1 13419 | . . . 4 β’ ((π β LMod β§ + = Β· ) β π = πΎ) |
7 | 6 | ex 115 | . . 3 β’ (π β LMod β ( + = Β· β π = πΎ)) |
8 | lmodfopne.0 | . . . . . 6 β’ 0 = (0gβπ) | |
9 | 4, 5, 8 | lmod0cl 13409 | . . . . 5 β’ (π β LMod β 0 β πΎ) |
10 | lmodfopne.1 | . . . . . 6 β’ 1 = (1rβπ) | |
11 | 4, 5, 10 | lmod1cl 13410 | . . . . 5 β’ (π β LMod β 1 β πΎ) |
12 | 9, 11 | jca 306 | . . . 4 β’ (π β LMod β ( 0 β πΎ β§ 1 β πΎ)) |
13 | eleq2 2241 | . . . . 5 β’ (π = πΎ β ( 0 β π β 0 β πΎ)) | |
14 | eleq2 2241 | . . . . 5 β’ (π = πΎ β ( 1 β π β 1 β πΎ)) | |
15 | 13, 14 | anbi12d 473 | . . . 4 β’ (π = πΎ β (( 0 β π β§ 1 β π) β ( 0 β πΎ β§ 1 β πΎ))) |
16 | 12, 15 | syl5ibrcom 157 | . . 3 β’ (π β LMod β (π = πΎ β ( 0 β π β§ 1 β π))) |
17 | 7, 16 | syld 45 | . 2 β’ (π β LMod β ( + = Β· β ( 0 β π β§ 1 β π))) |
18 | 17 | imp 124 | 1 β’ ((π β LMod β§ + = Β· ) β ( 0 β π β§ 1 β π)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 βcfv 5218 Basecbs 12464 Scalarcsca 12541 0gc0g 12710 +πcplusf 12777 1rcur 13147 LModclmod 13382 Β·sf cscaf 13383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-plusg 12551 df-mulr 12552 df-sca 12554 df-vsca 12555 df-0g 12712 df-plusf 12779 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 df-mgp 13136 df-ur 13148 df-ring 13186 df-lmod 13384 df-scaf 13385 |
This theorem is referenced by: lmodfopne 13421 |
Copyright terms: Public domain | W3C validator |