![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltmul12ad | GIF version |
Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltmul12ad.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
ltmul12ad.4 | ⊢ (𝜑 → 0 ≤ 𝐴) |
ltmul12ad.5 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ltmul12ad.6 | ⊢ (𝜑 → 0 ≤ 𝐶) |
ltmul12ad.7 | ⊢ (𝜑 → 𝐶 < 𝐷) |
Ref | Expression |
---|---|
ltmul12ad | ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | divgt0d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
4 | ltmul12ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
5 | ltmul12ad.5 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) |
7 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
8 | ltmul12ad.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
9 | 7, 8 | jca 306 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) |
10 | ltmul12ad.6 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
11 | ltmul12ad.7 | . . 3 ⊢ (𝜑 → 𝐶 < 𝐷) | |
12 | 10, 11 | jca 306 | . 2 ⊢ (𝜑 → (0 ≤ 𝐶 ∧ 𝐶 < 𝐷)) |
13 | ltmul12a 8879 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶 ∧ 𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷)) | |
14 | 3, 6, 9, 12, 13 | syl22anc 1250 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 · cmul 7877 < clt 8054 ≤ cle 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 |
This theorem is referenced by: cvgratnnlemrate 11673 |
Copyright terms: Public domain | W3C validator |