| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmul12ad | GIF version | ||
| Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltmul12ad.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| ltmul12ad.4 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| ltmul12ad.5 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ltmul12ad.6 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| ltmul12ad.7 | ⊢ (𝜑 → 𝐶 < 𝐷) |
| Ref | Expression |
|---|---|
| ltmul12ad | ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divgt0d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 4 | ltmul12ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 5 | ltmul12ad.5 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) |
| 7 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 8 | ltmul12ad.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 9 | 7, 8 | jca 306 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) |
| 10 | ltmul12ad.6 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 11 | ltmul12ad.7 | . . 3 ⊢ (𝜑 → 𝐶 < 𝐷) | |
| 12 | 10, 11 | jca 306 | . 2 ⊢ (𝜑 → (0 ≤ 𝐶 ∧ 𝐶 < 𝐷)) |
| 13 | ltmul12a 8975 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶 ∧ 𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷)) | |
| 14 | 3, 6, 9, 12, 13 | syl22anc 1253 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 ℝcr 7966 0cc0 7967 · cmul 7972 < clt 8149 ≤ cle 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 |
| This theorem is referenced by: cvgratnnlemrate 12007 |
| Copyright terms: Public domain | W3C validator |