| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rlmvnegg | GIF version | ||
| Description: Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| rlmvnegg | ⊢ (𝑅 ∈ 𝑉 → (invg‘𝑅) = (invg‘(ringLMod‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2206 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑅)) | |
| 2 | rlmbasg 14217 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) | |
| 3 | id 19 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ 𝑉) | |
| 4 | rlmfn 14215 | . . 3 ⊢ ringLMod Fn V | |
| 5 | elex 2783 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 6 | funfvex 5593 | . . . 4 ⊢ ((Fun ringLMod ∧ 𝑅 ∈ dom ringLMod) → (ringLMod‘𝑅) ∈ V) | |
| 7 | 6 | funfni 5376 | . . 3 ⊢ ((ringLMod Fn V ∧ 𝑅 ∈ V) → (ringLMod‘𝑅) ∈ V) |
| 8 | 4, 5, 7 | sylancr 414 | . 2 ⊢ (𝑅 ∈ 𝑉 → (ringLMod‘𝑅) ∈ V) |
| 9 | rlmplusgg 14218 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘(ringLMod‘𝑅))) | |
| 10 | 9 | oveqdr 5972 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(ringLMod‘𝑅))𝑦)) |
| 11 | 1, 2, 3, 8, 10 | grpinvpropdg 13407 | 1 ⊢ (𝑅 ∈ 𝑉 → (invg‘𝑅) = (invg‘(ringLMod‘𝑅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 Fn wfn 5266 ‘cfv 5271 Basecbs 12832 +gcplusg 12909 invgcminusg 13333 ringLModcrglmod 14196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-mulr 12923 df-sca 12925 df-vsca 12926 df-ip 12927 df-0g 13090 df-minusg 13336 df-sra 14197 df-rgmod 14198 |
| This theorem is referenced by: lidlnegcl 14247 |
| Copyright terms: Public domain | W3C validator |