| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlss | GIF version | ||
| Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| lidlss.b | ⊢ 𝐵 = (Base‘𝑊) |
| lidlss.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
| Ref | Expression |
|---|---|
| lidlss | ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmfn 14382 | . . . 4 ⊢ ringLMod Fn V | |
| 2 | lidlss.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
| 3 | 2 | lidlmex 14404 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| 4 | funfvex 5620 | . . . . 5 ⊢ ((Fun ringLMod ∧ 𝑊 ∈ dom ringLMod) → (ringLMod‘𝑊) ∈ V) | |
| 5 | 4 | funfni 5399 | . . . 4 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → (ringLMod‘𝑊) ∈ V) |
| 6 | 1, 3, 5 | sylancr 414 | . . 3 ⊢ (𝑈 ∈ 𝐼 → (ringLMod‘𝑊) ∈ V) |
| 7 | id 19 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ 𝐼) | |
| 8 | lidlvalg 14400 | . . . . . 6 ⊢ (𝑊 ∈ V → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) | |
| 9 | 3, 8 | syl 14 | . . . . 5 ⊢ (𝑈 ∈ 𝐼 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) |
| 10 | 2, 9 | eqtrid 2254 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝐼 = (LSubSp‘(ringLMod‘𝑊))) |
| 11 | 7, 10 | eleqtrd 2288 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LSubSp‘(ringLMod‘𝑊))) |
| 12 | eqid 2209 | . . . 4 ⊢ (Base‘(ringLMod‘𝑊)) = (Base‘(ringLMod‘𝑊)) | |
| 13 | eqid 2209 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑊)) = (LSubSp‘(ringLMod‘𝑊)) | |
| 14 | 12, 13 | lssssg 14289 | . . 3 ⊢ (((ringLMod‘𝑊) ∈ V ∧ 𝑈 ∈ (LSubSp‘(ringLMod‘𝑊))) → 𝑈 ⊆ (Base‘(ringLMod‘𝑊))) |
| 15 | 6, 11, 14 | syl2anc 411 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ (Base‘(ringLMod‘𝑊))) |
| 16 | lidlss.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | rlmbasg 14384 | . . . 4 ⊢ (𝑊 ∈ V → (Base‘𝑊) = (Base‘(ringLMod‘𝑊))) | |
| 18 | 3, 17 | syl 14 | . . 3 ⊢ (𝑈 ∈ 𝐼 → (Base‘𝑊) = (Base‘(ringLMod‘𝑊))) |
| 19 | 16, 18 | eqtrid 2254 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝐵 = (Base‘(ringLMod‘𝑊))) |
| 20 | 15, 19 | sseqtrrd 3243 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 Fn wfn 5289 ‘cfv 5294 Basecbs 12998 LSubSpclss 14281 ringLModcrglmod 14363 LIdealclidl 14396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-lssm 14282 df-sra 14364 df-rgmod 14365 df-lidl 14398 |
| This theorem is referenced by: lidlbas 14407 lidlsubg 14415 2idlss 14443 2idlcpblrng 14452 zndvds 14578 |
| Copyright terms: Public domain | W3C validator |