ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlss GIF version

Theorem lidlss 14405
Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
lidlss.b 𝐵 = (Base‘𝑊)
lidlss.i 𝐼 = (LIdeal‘𝑊)
Assertion
Ref Expression
lidlss (𝑈𝐼𝑈𝐵)

Proof of Theorem lidlss
StepHypRef Expression
1 rlmfn 14382 . . . 4 ringLMod Fn V
2 lidlss.i . . . . 5 𝐼 = (LIdeal‘𝑊)
32lidlmex 14404 . . . 4 (𝑈𝐼𝑊 ∈ V)
4 funfvex 5620 . . . . 5 ((Fun ringLMod ∧ 𝑊 ∈ dom ringLMod) → (ringLMod‘𝑊) ∈ V)
54funfni 5399 . . . 4 ((ringLMod Fn V ∧ 𝑊 ∈ V) → (ringLMod‘𝑊) ∈ V)
61, 3, 5sylancr 414 . . 3 (𝑈𝐼 → (ringLMod‘𝑊) ∈ V)
7 id 19 . . . 4 (𝑈𝐼𝑈𝐼)
8 lidlvalg 14400 . . . . . 6 (𝑊 ∈ V → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)))
93, 8syl 14 . . . . 5 (𝑈𝐼 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)))
102, 9eqtrid 2254 . . . 4 (𝑈𝐼𝐼 = (LSubSp‘(ringLMod‘𝑊)))
117, 10eleqtrd 2288 . . 3 (𝑈𝐼𝑈 ∈ (LSubSp‘(ringLMod‘𝑊)))
12 eqid 2209 . . . 4 (Base‘(ringLMod‘𝑊)) = (Base‘(ringLMod‘𝑊))
13 eqid 2209 . . . 4 (LSubSp‘(ringLMod‘𝑊)) = (LSubSp‘(ringLMod‘𝑊))
1412, 13lssssg 14289 . . 3 (((ringLMod‘𝑊) ∈ V ∧ 𝑈 ∈ (LSubSp‘(ringLMod‘𝑊))) → 𝑈 ⊆ (Base‘(ringLMod‘𝑊)))
156, 11, 14syl2anc 411 . 2 (𝑈𝐼𝑈 ⊆ (Base‘(ringLMod‘𝑊)))
16 lidlss.b . . 3 𝐵 = (Base‘𝑊)
17 rlmbasg 14384 . . . 4 (𝑊 ∈ V → (Base‘𝑊) = (Base‘(ringLMod‘𝑊)))
183, 17syl 14 . . 3 (𝑈𝐼 → (Base‘𝑊) = (Base‘(ringLMod‘𝑊)))
1916, 18eqtrid 2254 . 2 (𝑈𝐼𝐵 = (Base‘(ringLMod‘𝑊)))
2015, 19sseqtrrd 3243 1 (𝑈𝐼𝑈𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  Vcvv 2779  wss 3177   Fn wfn 5289  cfv 5294  Basecbs 12998  LSubSpclss 14281  ringLModcrglmod 14363  LIdealclidl 14396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-lssm 14282  df-sra 14364  df-rgmod 14365  df-lidl 14398
This theorem is referenced by:  lidlbas  14407  lidlsubg  14415  2idlss  14443  2idlcpblrng  14452  zndvds  14578
  Copyright terms: Public domain W3C validator