| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlss | GIF version | ||
| Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| lidlss.b | ⊢ 𝐵 = (Base‘𝑊) |
| lidlss.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
| Ref | Expression |
|---|---|
| lidlss | ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmfn 14259 | . . . 4 ⊢ ringLMod Fn V | |
| 2 | lidlss.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
| 3 | 2 | lidlmex 14281 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| 4 | funfvex 5600 | . . . . 5 ⊢ ((Fun ringLMod ∧ 𝑊 ∈ dom ringLMod) → (ringLMod‘𝑊) ∈ V) | |
| 5 | 4 | funfni 5381 | . . . 4 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → (ringLMod‘𝑊) ∈ V) |
| 6 | 1, 3, 5 | sylancr 414 | . . 3 ⊢ (𝑈 ∈ 𝐼 → (ringLMod‘𝑊) ∈ V) |
| 7 | id 19 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ 𝐼) | |
| 8 | lidlvalg 14277 | . . . . . 6 ⊢ (𝑊 ∈ V → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) | |
| 9 | 3, 8 | syl 14 | . . . . 5 ⊢ (𝑈 ∈ 𝐼 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) |
| 10 | 2, 9 | eqtrid 2251 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝐼 = (LSubSp‘(ringLMod‘𝑊))) |
| 11 | 7, 10 | eleqtrd 2285 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LSubSp‘(ringLMod‘𝑊))) |
| 12 | eqid 2206 | . . . 4 ⊢ (Base‘(ringLMod‘𝑊)) = (Base‘(ringLMod‘𝑊)) | |
| 13 | eqid 2206 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑊)) = (LSubSp‘(ringLMod‘𝑊)) | |
| 14 | 12, 13 | lssssg 14166 | . . 3 ⊢ (((ringLMod‘𝑊) ∈ V ∧ 𝑈 ∈ (LSubSp‘(ringLMod‘𝑊))) → 𝑈 ⊆ (Base‘(ringLMod‘𝑊))) |
| 15 | 6, 11, 14 | syl2anc 411 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ (Base‘(ringLMod‘𝑊))) |
| 16 | lidlss.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | rlmbasg 14261 | . . . 4 ⊢ (𝑊 ∈ V → (Base‘𝑊) = (Base‘(ringLMod‘𝑊))) | |
| 18 | 3, 17 | syl 14 | . . 3 ⊢ (𝑈 ∈ 𝐼 → (Base‘𝑊) = (Base‘(ringLMod‘𝑊))) |
| 19 | 16, 18 | eqtrid 2251 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝐵 = (Base‘(ringLMod‘𝑊))) |
| 20 | 15, 19 | sseqtrrd 3233 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3167 Fn wfn 5271 ‘cfv 5276 Basecbs 12876 LSubSpclss 14158 ringLModcrglmod 14240 LIdealclidl 14273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-lssm 14159 df-sra 14241 df-rgmod 14242 df-lidl 14275 |
| This theorem is referenced by: lidlbas 14284 lidlsubg 14292 2idlss 14320 2idlcpblrng 14329 zndvds 14455 |
| Copyright terms: Public domain | W3C validator |