| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidlss | GIF version | ||
| Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| lidlss.b | ⊢ 𝐵 = (Base‘𝑊) |
| lidlss.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
| Ref | Expression |
|---|---|
| lidlss | ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmfn 14009 | . . . 4 ⊢ ringLMod Fn V | |
| 2 | lidlss.i | . . . . 5 ⊢ 𝐼 = (LIdeal‘𝑊) | |
| 3 | 2 | lidlmex 14031 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) |
| 4 | funfvex 5575 | . . . . 5 ⊢ ((Fun ringLMod ∧ 𝑊 ∈ dom ringLMod) → (ringLMod‘𝑊) ∈ V) | |
| 5 | 4 | funfni 5358 | . . . 4 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → (ringLMod‘𝑊) ∈ V) |
| 6 | 1, 3, 5 | sylancr 414 | . . 3 ⊢ (𝑈 ∈ 𝐼 → (ringLMod‘𝑊) ∈ V) |
| 7 | id 19 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ 𝐼) | |
| 8 | lidlvalg 14027 | . . . . . 6 ⊢ (𝑊 ∈ V → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) | |
| 9 | 3, 8 | syl 14 | . . . . 5 ⊢ (𝑈 ∈ 𝐼 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) |
| 10 | 2, 9 | eqtrid 2241 | . . . 4 ⊢ (𝑈 ∈ 𝐼 → 𝐼 = (LSubSp‘(ringLMod‘𝑊))) |
| 11 | 7, 10 | eleqtrd 2275 | . . 3 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ∈ (LSubSp‘(ringLMod‘𝑊))) |
| 12 | eqid 2196 | . . . 4 ⊢ (Base‘(ringLMod‘𝑊)) = (Base‘(ringLMod‘𝑊)) | |
| 13 | eqid 2196 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑊)) = (LSubSp‘(ringLMod‘𝑊)) | |
| 14 | 12, 13 | lssssg 13916 | . . 3 ⊢ (((ringLMod‘𝑊) ∈ V ∧ 𝑈 ∈ (LSubSp‘(ringLMod‘𝑊))) → 𝑈 ⊆ (Base‘(ringLMod‘𝑊))) |
| 15 | 6, 11, 14 | syl2anc 411 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ (Base‘(ringLMod‘𝑊))) |
| 16 | lidlss.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | rlmbasg 14011 | . . . 4 ⊢ (𝑊 ∈ V → (Base‘𝑊) = (Base‘(ringLMod‘𝑊))) | |
| 18 | 3, 17 | syl 14 | . . 3 ⊢ (𝑈 ∈ 𝐼 → (Base‘𝑊) = (Base‘(ringLMod‘𝑊))) |
| 19 | 16, 18 | eqtrid 2241 | . 2 ⊢ (𝑈 ∈ 𝐼 → 𝐵 = (Base‘(ringLMod‘𝑊))) |
| 20 | 15, 19 | sseqtrrd 3222 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 Fn wfn 5253 ‘cfv 5258 Basecbs 12678 LSubSpclss 13908 ringLModcrglmod 13990 LIdealclidl 14023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-mulr 12769 df-sca 12771 df-vsca 12772 df-ip 12773 df-lssm 13909 df-sra 13991 df-rgmod 13992 df-lidl 14025 |
| This theorem is referenced by: lidlbas 14034 lidlsubg 14042 2idlss 14070 2idlcpblrng 14079 zndvds 14205 |
| Copyright terms: Public domain | W3C validator |