![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numexp2x | Structured version Visualization version GIF version |
Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
numexp.1 | โข ๐ด โ โ0 |
numexpp1.2 | โข ๐ โ โ0 |
numexp2x.3 | โข (2 ยท ๐) = ๐ |
numexp2x.4 | โข (๐ดโ๐) = ๐ท |
numexp2x.5 | โข (๐ท ยท ๐ท) = ๐ถ |
Ref | Expression |
---|---|
numexp2x | โข (๐ดโ๐) = ๐ถ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numexp2x.3 | . . . . 5 โข (2 ยท ๐) = ๐ | |
2 | numexpp1.2 | . . . . . . 7 โข ๐ โ โ0 | |
3 | 2 | nn0cni 12484 | . . . . . 6 โข ๐ โ โ |
4 | 3 | 2timesi 12350 | . . . . 5 โข (2 ยท ๐) = (๐ + ๐) |
5 | 1, 4 | eqtr3i 2763 | . . . 4 โข ๐ = (๐ + ๐) |
6 | 5 | oveq2i 7420 | . . 3 โข (๐ดโ๐) = (๐ดโ(๐ + ๐)) |
7 | numexp.1 | . . . . 5 โข ๐ด โ โ0 | |
8 | 7 | nn0cni 12484 | . . . 4 โข ๐ด โ โ |
9 | expadd 14070 | . . . 4 โข ((๐ด โ โ โง ๐ โ โ0 โง ๐ โ โ0) โ (๐ดโ(๐ + ๐)) = ((๐ดโ๐) ยท (๐ดโ๐))) | |
10 | 8, 2, 2, 9 | mp3an 1462 | . . 3 โข (๐ดโ(๐ + ๐)) = ((๐ดโ๐) ยท (๐ดโ๐)) |
11 | 6, 10 | eqtri 2761 | . 2 โข (๐ดโ๐) = ((๐ดโ๐) ยท (๐ดโ๐)) |
12 | numexp2x.4 | . . . 4 โข (๐ดโ๐) = ๐ท | |
13 | 12, 12 | oveq12i 7421 | . . 3 โข ((๐ดโ๐) ยท (๐ดโ๐)) = (๐ท ยท ๐ท) |
14 | numexp2x.5 | . . 3 โข (๐ท ยท ๐ท) = ๐ถ | |
15 | 13, 14 | eqtri 2761 | . 2 โข ((๐ดโ๐) ยท (๐ดโ๐)) = ๐ถ |
16 | 11, 15 | eqtri 2761 | 1 โข (๐ดโ๐) = ๐ถ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 โ wcel 2107 (class class class)co 7409 โcc 11108 + caddc 11113 ยท cmul 11115 2c2 12267 โ0cn0 12472 โcexp 14027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-seq 13967 df-exp 14028 |
This theorem is referenced by: 2exp4 17018 2exp6 17020 2exp8 17022 2exp16 17024 1259lem1 17064 log2ub 26454 3exp7 40918 wallispi2lem2 44788 |
Copyright terms: Public domain | W3C validator |