| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numexp2x | Structured version Visualization version GIF version | ||
| Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| numexp.1 | ⊢ 𝐴 ∈ ℕ0 |
| numexpp1.2 | ⊢ 𝑀 ∈ ℕ0 |
| numexp2x.3 | ⊢ (2 · 𝑀) = 𝑁 |
| numexp2x.4 | ⊢ (𝐴↑𝑀) = 𝐷 |
| numexp2x.5 | ⊢ (𝐷 · 𝐷) = 𝐶 |
| Ref | Expression |
|---|---|
| numexp2x | ⊢ (𝐴↑𝑁) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numexp2x.3 | . . . . 5 ⊢ (2 · 𝑀) = 𝑁 | |
| 2 | numexpp1.2 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
| 3 | 2 | nn0cni 12461 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 4 | 3 | 2timesi 12326 | . . . . 5 ⊢ (2 · 𝑀) = (𝑀 + 𝑀) |
| 5 | 1, 4 | eqtr3i 2755 | . . . 4 ⊢ 𝑁 = (𝑀 + 𝑀) |
| 6 | 5 | oveq2i 7401 | . . 3 ⊢ (𝐴↑𝑁) = (𝐴↑(𝑀 + 𝑀)) |
| 7 | numexp.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 7 | nn0cni 12461 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 9 | expadd 14076 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑀)) = ((𝐴↑𝑀) · (𝐴↑𝑀))) | |
| 10 | 8, 2, 2, 9 | mp3an 1463 | . . 3 ⊢ (𝐴↑(𝑀 + 𝑀)) = ((𝐴↑𝑀) · (𝐴↑𝑀)) |
| 11 | 6, 10 | eqtri 2753 | . 2 ⊢ (𝐴↑𝑁) = ((𝐴↑𝑀) · (𝐴↑𝑀)) |
| 12 | numexp2x.4 | . . . 4 ⊢ (𝐴↑𝑀) = 𝐷 | |
| 13 | 12, 12 | oveq12i 7402 | . . 3 ⊢ ((𝐴↑𝑀) · (𝐴↑𝑀)) = (𝐷 · 𝐷) |
| 14 | numexp2x.5 | . . 3 ⊢ (𝐷 · 𝐷) = 𝐶 | |
| 15 | 13, 14 | eqtri 2753 | . 2 ⊢ ((𝐴↑𝑀) · (𝐴↑𝑀)) = 𝐶 |
| 16 | 11, 15 | eqtri 2753 | 1 ⊢ (𝐴↑𝑁) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 · cmul 11080 2c2 12248 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: 2exp4 17062 2exp6 17064 2exp8 17066 2exp16 17068 1259lem1 17108 log2ub 26866 3exp7 42048 wallispi2lem2 46077 |
| Copyright terms: Public domain | W3C validator |