Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numexp2x | Structured version Visualization version GIF version |
Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
numexp.1 | ⊢ 𝐴 ∈ ℕ0 |
numexpp1.2 | ⊢ 𝑀 ∈ ℕ0 |
numexp2x.3 | ⊢ (2 · 𝑀) = 𝑁 |
numexp2x.4 | ⊢ (𝐴↑𝑀) = 𝐷 |
numexp2x.5 | ⊢ (𝐷 · 𝐷) = 𝐶 |
Ref | Expression |
---|---|
numexp2x | ⊢ (𝐴↑𝑁) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numexp2x.3 | . . . . 5 ⊢ (2 · 𝑀) = 𝑁 | |
2 | numexpp1.2 | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
3 | 2 | nn0cni 12175 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
4 | 3 | 2timesi 12041 | . . . . 5 ⊢ (2 · 𝑀) = (𝑀 + 𝑀) |
5 | 1, 4 | eqtr3i 2768 | . . . 4 ⊢ 𝑁 = (𝑀 + 𝑀) |
6 | 5 | oveq2i 7266 | . . 3 ⊢ (𝐴↑𝑁) = (𝐴↑(𝑀 + 𝑀)) |
7 | numexp.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
8 | 7 | nn0cni 12175 | . . . 4 ⊢ 𝐴 ∈ ℂ |
9 | expadd 13753 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑀)) = ((𝐴↑𝑀) · (𝐴↑𝑀))) | |
10 | 8, 2, 2, 9 | mp3an 1459 | . . 3 ⊢ (𝐴↑(𝑀 + 𝑀)) = ((𝐴↑𝑀) · (𝐴↑𝑀)) |
11 | 6, 10 | eqtri 2766 | . 2 ⊢ (𝐴↑𝑁) = ((𝐴↑𝑀) · (𝐴↑𝑀)) |
12 | numexp2x.4 | . . . 4 ⊢ (𝐴↑𝑀) = 𝐷 | |
13 | 12, 12 | oveq12i 7267 | . . 3 ⊢ ((𝐴↑𝑀) · (𝐴↑𝑀)) = (𝐷 · 𝐷) |
14 | numexp2x.5 | . . 3 ⊢ (𝐷 · 𝐷) = 𝐶 | |
15 | 13, 14 | eqtri 2766 | . 2 ⊢ ((𝐴↑𝑀) · (𝐴↑𝑀)) = 𝐶 |
16 | 11, 15 | eqtri 2766 | 1 ⊢ (𝐴↑𝑁) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 · cmul 10807 2c2 11958 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: 2exp4 16714 2exp6 16716 2exp8 16718 2exp16 16720 1259lem1 16760 log2ub 26004 3exp7 39989 wallispi2lem2 43503 |
Copyright terms: Public domain | W3C validator |