MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinq34lt0t Structured version   Visualization version   GIF version

Theorem sinq34lt0t 26475
Description: The sine of a number strictly between π and 2 · π is negative. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
sinq34lt0t (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0)

Proof of Theorem sinq34lt0t
StepHypRef Expression
1 elioore 13397 . . . . . 6 (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℝ)
2 picn 26424 . . . . . . . . . . 11 π ∈ ℂ
32addlidi 11428 . . . . . . . . . 10 (0 + π) = π
43eqcomi 2745 . . . . . . . . 9 π = (0 + π)
522timesi 12383 . . . . . . . . 9 (2 · π) = (π + π)
64, 5oveq12i 7422 . . . . . . . 8 (π(,)(2 · π)) = ((0 + π)(,)(π + π))
76eleq2i 2827 . . . . . . 7 (𝐴 ∈ (π(,)(2 · π)) ↔ 𝐴 ∈ ((0 + π)(,)(π + π)))
8 pire 26423 . . . . . . . 8 π ∈ ℝ
9 0re 11242 . . . . . . . . 9 0 ∈ ℝ
10 iooshf 13448 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ π ∈ ℝ) ∧ (0 ∈ ℝ ∧ π ∈ ℝ)) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))))
119, 8, 10mpanr12 705 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))))
128, 11mpan2 691 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − π) ∈ (0(,)π) ↔ 𝐴 ∈ ((0 + π)(,)(π + π))))
137, 12bitr4id 290 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π)))
141, 13syl 17 . . . . 5 (𝐴 ∈ (π(,)(2 · π)) → (𝐴 ∈ (π(,)(2 · π)) ↔ (𝐴 − π) ∈ (0(,)π)))
1514ibi 267 . . . 4 (𝐴 ∈ (π(,)(2 · π)) → (𝐴 − π) ∈ (0(,)π))
16 sinq12gt0 26473 . . . 4 ((𝐴 − π) ∈ (0(,)π) → 0 < (sin‘(𝐴 − π)))
1715, 16syl 17 . . 3 (𝐴 ∈ (π(,)(2 · π)) → 0 < (sin‘(𝐴 − π)))
181recnd 11268 . . . 4 (𝐴 ∈ (π(,)(2 · π)) → 𝐴 ∈ ℂ)
19 sinmpi 26453 . . . 4 (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
2018, 19syl 17 . . 3 (𝐴 ∈ (π(,)(2 · π)) → (sin‘(𝐴 − π)) = -(sin‘𝐴))
2117, 20breqtrd 5150 . 2 (𝐴 ∈ (π(,)(2 · π)) → 0 < -(sin‘𝐴))
221resincld 16166 . . 3 (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) ∈ ℝ)
2322lt0neg1d 11811 . 2 (𝐴 ∈ (π(,)(2 · π)) → ((sin‘𝐴) < 0 ↔ 0 < -(sin‘𝐴)))
2421, 23mpbird 257 1 (𝐴 ∈ (π(,)(2 · π)) → (sin‘𝐴) < 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   + caddc 11137   · cmul 11139   < clt 11274  cmin 11471  -cneg 11472  2c2 12300  (,)cioo 13367  sincsin 16084  πcpi 16087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator