MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem2 Structured version   Visualization version   GIF version

Theorem iseraltlem2 15041
Description: Lemma for iseralt 15043. The terms of an alternating series form a chain of inequalities in alternate terms, so that for example 𝑆(1) ≤ 𝑆(3) ≤ 𝑆(5) ≤ ... and ... ≤ 𝑆(4) ≤ 𝑆(2) ≤ 𝑆(0) (assuming 𝑀 = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseraltlem2 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝐾   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . . . . . . . 10 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
2 2t0e0 11809 . . . . . . . . . 10 (2 · 0) = 0
31, 2syl6eq 2874 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = 0)
43oveq2d 7174 . . . . . . . 8 (𝑥 = 0 → (𝑁 + (2 · 𝑥)) = (𝑁 + 0))
54fveq2d 6676 . . . . . . 7 (𝑥 = 0 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + 0)))
65oveq2d 7174 . . . . . 6 (𝑥 = 0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))))
76breq1d 5078 . . . . 5 (𝑥 = 0 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
87imbi2d 343 . . . 4 (𝑥 = 0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
9 oveq2 7166 . . . . . . . . 9 (𝑥 = 𝑛 → (2 · 𝑥) = (2 · 𝑛))
109oveq2d 7174 . . . . . . . 8 (𝑥 = 𝑛 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝑛)))
1110fveq2d 6676 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))))
1211oveq2d 7174 . . . . . 6 (𝑥 = 𝑛 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
1312breq1d 5078 . . . . 5 (𝑥 = 𝑛 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
1413imbi2d 343 . . . 4 (𝑥 = 𝑛 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
15 oveq2 7166 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (2 · 𝑥) = (2 · (𝑛 + 1)))
1615oveq2d 7174 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · (𝑛 + 1))))
1716fveq2d 6676 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
1817oveq2d 7174 . . . . . 6 (𝑥 = (𝑛 + 1) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
1918breq1d 5078 . . . . 5 (𝑥 = (𝑛 + 1) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2019imbi2d 343 . . . 4 (𝑥 = (𝑛 + 1) → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
21 oveq2 7166 . . . . . . . . 9 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
2221oveq2d 7174 . . . . . . . 8 (𝑥 = 𝐾 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝐾)))
2322fveq2d 6676 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))
2423oveq2d 7174 . . . . . 6 (𝑥 = 𝐾 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))
2524breq1d 5078 . . . . 5 (𝑥 = 𝐾 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2625imbi2d 343 . . . 4 (𝑥 = 𝐾 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
27 iseralt.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
28 uzssz 12267 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
2927, 28eqsstri 4003 . . . . . . . . . . 11 𝑍 ⊆ ℤ
3029a1i 11 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℤ)
3130sselda 3969 . . . . . . . . 9 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
3231zcnd 12091 . . . . . . . 8 ((𝜑𝑁𝑍) → 𝑁 ∈ ℂ)
3332addid1d 10842 . . . . . . 7 ((𝜑𝑁𝑍) → (𝑁 + 0) = 𝑁)
3433fveq2d 6676 . . . . . 6 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘(𝑁 + 0)) = (seq𝑀( + , 𝐹)‘𝑁))
3534oveq2d 7174 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
36 neg1rr 11755 . . . . . . . 8 -1 ∈ ℝ
37 neg1ne0 11756 . . . . . . . 8 -1 ≠ 0
38 reexpclz 13452 . . . . . . . 8 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ)
3936, 37, 31, 38mp3an12i 1461 . . . . . . 7 ((𝜑𝑁𝑍) → (-1↑𝑁) ∈ ℝ)
40 iseralt.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
41 iseralt.6 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
4230sselda 3969 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
43 reexpclz 13452 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℝ)
4436, 37, 42, 43mp3an12i 1461 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
45 iseralt.3 . . . . . . . . . . . 12 (𝜑𝐺:𝑍⟶ℝ)
4645ffvelrnda 6853 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
4744, 46remulcld 10673 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
4841, 47eqeltrd 2915 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4927, 40, 48serfre 13402 . . . . . . . 8 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
5049ffvelrnda 6853 . . . . . . 7 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
5139, 50remulcld 10673 . . . . . 6 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
5251leidd 11208 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5335, 52eqbrtrd 5090 . . . 4 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5445ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝐺:𝑍⟶ℝ)
55 ax-1cn 10597 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
56552timesi 11778 . . . . . . . . . . . . . . 15 (2 · 1) = (1 + 1)
5756oveq2i 7169 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) + (2 · 1)) = ((𝑁 + (2 · 𝑛)) + (1 + 1))
58 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁𝑍) → 𝑁𝑍)
5958, 27eleqtrdi 2925 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑁𝑍) → 𝑁 ∈ (ℤ𝑀))
6059adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ (ℤ𝑀))
61 eluzelz 12256 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
6260, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6362zcnd 12091 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
64 2cn 11715 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
65 nn0cn 11910 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
6665adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
67 mulcl 10623 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
6864, 66, 67sylancr 589 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℂ)
6964, 55mulcli 10650 . . . . . . . . . . . . . . . 16 (2 · 1) ∈ ℂ
7069a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 1) ∈ ℂ)
7163, 68, 70addassd 10665 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (2 · 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
7257, 71syl5eqr 2872 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (1 + 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
73 2nn0 11917 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
74 simpr 487 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
75 nn0mulcl 11936 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
7673, 74, 75sylancr 589 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
77 uzaddcl 12307 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · 𝑛) ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7860, 76, 77syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7928, 78sseldi 3967 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℤ)
8079zcnd 12091 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℂ)
81 1cnd 10638 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℂ)
8280, 81, 81addassd 10665 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = ((𝑁 + (2 · 𝑛)) + (1 + 1)))
83 2cnd 11718 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8483, 66, 81adddid 10667 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8584oveq2d 7174 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
8672, 82, 853eqtr4d 2868 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = (𝑁 + (2 · (𝑛 + 1))))
87 peano2nn0 11940 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
8887adantl 484 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
89 nn0mulcl 11936 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (𝑛 + 1) ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
9073, 88, 89sylancr 589 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
91 uzaddcl 12307 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · (𝑛 + 1)) ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9260, 90, 91syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9392, 27eleqtrrdi 2926 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ 𝑍)
9486, 93eqeltrd 2915 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) ∈ 𝑍)
9554, 94ffvelrnd 6854 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
96 peano2uz 12304 . . . . . . . . . . . . 13 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9778, 96syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9897, 27eleqtrrdi 2926 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ 𝑍)
9954, 98ffvelrnd 6854 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
10095, 99resubcld 11070 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
101 0red 10646 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℝ)
10239adantr 483 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℝ)
10349ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10478, 27eleqtrrdi 2926 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ 𝑍)
105103, 104ffvelrnd 6854 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℝ)
106102, 105remulcld 10673 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ)
107 fvoveq1 7181 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺‘(𝑘 + 1)) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
108 fveq2 6672 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺𝑘) = (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
109107, 108breq12d 5081 . . . . . . . . . . 11 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘) ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
110 iseralt.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
111110ralrimiva 3184 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
112111ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
113109, 112, 98rspcdva 3627 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
11495, 99suble0d 11233 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0 ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
115113, 114mpbird 259 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0)
116100, 101, 106, 115leadd2dd 11257 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0))
117 seqp1 13387 . . . . . . . . . . . . 13 (((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
11897, 117syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
119 seqp1 13387 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
12078, 119syl 17 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
121120oveq1d 7173 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
122118, 121eqtrd 2858 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
12386fveq2d 6676 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
124105recnd 10671 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℂ)
125 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐹𝑘) = (𝐹‘((𝑁 + (2 · 𝑛)) + 1)))
126 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (-1↑𝑘) = (-1↑((𝑁 + (2 · 𝑛)) + 1)))
127126, 108oveq12d 7176 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
128125, 127eqeq12d 2839 . . . . . . . . . . . . . . . 16 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
12941ralrimiva 3184 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
130129ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
131128, 130, 98rspcdva 3627 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
132 neg1cn 11754 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
133132a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℂ)
13437a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ≠ 0)
135133, 134, 79expp1zd 13522 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -1))
13636a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℝ)
137136, 134, 79reexpclzd 13613 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℝ)
138137recnd 10671 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ)
139 mulcom 10625 . . . . . . . . . . . . . . . . . 18 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ -1 ∈ ℂ) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
140138, 132, 139sylancl 588 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
141138mulm1d 11094 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1 · (-1↑(𝑁 + (2 · 𝑛)))) = -(-1↑(𝑁 + (2 · 𝑛))))
142135, 140, 1413eqtrd 2862 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = -(-1↑(𝑁 + (2 · 𝑛))))
143142oveq1d 7173 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14499recnd 10671 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
145 mulneg12 11080 . . . . . . . . . . . . . . . 16 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
146138, 144, 145syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
147131, 143, 1463eqtrd 2862 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14899renegcld 11069 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
149137, 148remulcld 10673 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
150147, 149eqeltrd 2915 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
151150recnd 10671 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
152 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐹𝑘) = (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
153 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (-1↑𝑘) = (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)))
154 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐺𝑘) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
155153, 154oveq12d 7176 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
156152, 155eqeq12d 2839 . . . . . . . . . . . . . . . 16 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
157156, 130, 94rspcdva 3627 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
15879peano2zd 12093 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ ℤ)
159133, 134, 158expp1zd 13522 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1))
160142oveq1d 7173 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1) = (-(-1↑(𝑁 + (2 · 𝑛))) · -1))
161 mul2neg 11081 . . . . . . . . . . . . . . . . . . 19 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ 1 ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
162138, 55, 161sylancl 588 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
163138mulid1d 10660 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · 1) = (-1↑(𝑁 + (2 · 𝑛))))
164162, 163eqtrd 2858 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1↑(𝑁 + (2 · 𝑛))))
165159, 160, 1643eqtrd 2862 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (-1↑(𝑁 + (2 · 𝑛))))
166165oveq1d 7173 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
167157, 166eqtrd 2858 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
168137, 95remulcld 10673 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
169167, 168eqeltrd 2915 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
170169recnd 10671 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
171124, 151, 170addassd 10665 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
172122, 123, 1713eqtr3d 2866 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
173172oveq2d 7174 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
174102recnd 10671 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
175150, 169readdcld 10672 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
176175recnd 10671 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℂ)
177174, 124, 176adddid 10667 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
178174, 151, 170adddid 10667 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
179147oveq2d 7174 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
180148recnd 10671 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
181174, 138, 180mulassd 10666 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
182179, 181eqtr4d 2861 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
18383, 63, 66adddid 10667 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑁 + 𝑛)) = ((2 · 𝑁) + (2 · 𝑛)))
184632timesd 11883 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑁) = (𝑁 + 𝑁))
185184oveq1d 7173 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑁) + (2 · 𝑛)) = ((𝑁 + 𝑁) + (2 · 𝑛)))
18663, 63, 68addassd 10665 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + 𝑁) + (2 · 𝑛)) = (𝑁 + (𝑁 + (2 · 𝑛))))
187183, 185, 1863eqtrrd 2863 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (𝑁 + (2 · 𝑛))) = (2 · (𝑁 + 𝑛)))
188187oveq2d 7174 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = (-1↑(2 · (𝑁 + 𝑛))))
189 expaddz 13476 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝑁 + (2 · 𝑛)) ∈ ℤ)) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
190133, 134, 62, 79, 189syl22anc 836 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
191 2z 12017 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
192191a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℤ)
193 nn0z 12008 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
194 zaddcl 12025 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 + 𝑛) ∈ ℤ)
19531, 193, 194syl2an 597 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + 𝑛) ∈ ℤ)
196 expmulz 13478 . . . . . . . . . . . . . . . . 17 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑁 + 𝑛) ∈ ℤ)) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
197133, 134, 192, 195, 196syl22anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
198 neg1sqe1 13562 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
199198oveq1i 7168 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑(𝑁 + 𝑛)) = (1↑(𝑁 + 𝑛))
200 1exp 13461 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 𝑛) ∈ ℤ → (1↑(𝑁 + 𝑛)) = 1)
201195, 200syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1↑(𝑁 + 𝑛)) = 1)
202199, 201syl5eq 2870 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑2)↑(𝑁 + 𝑛)) = 1)
203197, 202eqtrd 2858 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = 1)
204188, 190, 2033eqtr3d 2866 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) = 1)
205204oveq1d 7173 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
206180mulid2d 10661 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
207182, 205, 2063eqtrd 2862 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
208167oveq2d 7174 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
20995recnd 10671 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
210174, 138, 209mulassd 10666 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
211208, 210eqtr4d 2861 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
212204oveq1d 7173 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
213209mulid2d 10661 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
214211, 212, 2133eqtrd 2862 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
215207, 214oveq12d 7176 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
216144negcld 10986 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
217216, 209addcomd 10844 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
218209, 144negsubd 11005 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
219217, 218eqtrd 2858 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
220178, 215, 2193eqtrd 2862 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
221220oveq2d 7174 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
222173, 177, 2213eqtrrd 2863 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
223106recnd 10671 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℂ)
224223addid1d 10842 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
225116, 222, 2243brtr3d 5099 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
226103, 93ffvelrnd 6854 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) ∈ ℝ)
227102, 226remulcld 10673 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ)
22851adantr 483 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
229 letr 10736 . . . . . . . 8 ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
230227, 106, 228, 229syl3anc 1367 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
231225, 230mpand 693 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
232231expcom 416 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑𝑁𝑍) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
233232a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
2348, 14, 20, 26, 53, 233nn0ind 12080 . . 3 (𝐾 ∈ ℕ0 → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
235234com12 32 . 2 ((𝜑𝑁𝑍) → (𝐾 ∈ ℕ0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2362353impia 1113 1 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wss 3938   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  cmin 10872  -cneg 10873  2c2 11695  0cn0 11900  cz 11984  cuz 12246  seqcseq 13372  cexp 13432  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-exp 13433
This theorem is referenced by:  iseraltlem3  15042
  Copyright terms: Public domain W3C validator