MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem2 Structured version   Visualization version   GIF version

Theorem iseraltlem2 15567
Description: Lemma for iseralt 15569. The terms of an alternating series form a chain of inequalities in alternate terms, so that for example 𝑆(1) ≤ 𝑆(3) ≤ 𝑆(5) ≤ ... and ... ≤ 𝑆(4) ≤ 𝑆(2) ≤ 𝑆(0) (assuming 𝑀 = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseraltlem2 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝐾   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . . . . . . . . 10 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
2 2t0e0 12322 . . . . . . . . . 10 (2 · 0) = 0
31, 2eqtrdi 2792 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = 0)
43oveq2d 7373 . . . . . . . 8 (𝑥 = 0 → (𝑁 + (2 · 𝑥)) = (𝑁 + 0))
54fveq2d 6846 . . . . . . 7 (𝑥 = 0 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + 0)))
65oveq2d 7373 . . . . . 6 (𝑥 = 0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))))
76breq1d 5115 . . . . 5 (𝑥 = 0 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
87imbi2d 340 . . . 4 (𝑥 = 0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
9 oveq2 7365 . . . . . . . . 9 (𝑥 = 𝑛 → (2 · 𝑥) = (2 · 𝑛))
109oveq2d 7373 . . . . . . . 8 (𝑥 = 𝑛 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝑛)))
1110fveq2d 6846 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))))
1211oveq2d 7373 . . . . . 6 (𝑥 = 𝑛 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
1312breq1d 5115 . . . . 5 (𝑥 = 𝑛 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
1413imbi2d 340 . . . 4 (𝑥 = 𝑛 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
15 oveq2 7365 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (2 · 𝑥) = (2 · (𝑛 + 1)))
1615oveq2d 7373 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · (𝑛 + 1))))
1716fveq2d 6846 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
1817oveq2d 7373 . . . . . 6 (𝑥 = (𝑛 + 1) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
1918breq1d 5115 . . . . 5 (𝑥 = (𝑛 + 1) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2019imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
21 oveq2 7365 . . . . . . . . 9 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
2221oveq2d 7373 . . . . . . . 8 (𝑥 = 𝐾 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝐾)))
2322fveq2d 6846 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))
2423oveq2d 7373 . . . . . 6 (𝑥 = 𝐾 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))
2524breq1d 5115 . . . . 5 (𝑥 = 𝐾 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2625imbi2d 340 . . . 4 (𝑥 = 𝐾 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
27 iseralt.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
28 uzssz 12784 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
2927, 28eqsstri 3978 . . . . . . . . . . 11 𝑍 ⊆ ℤ
3029a1i 11 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℤ)
3130sselda 3944 . . . . . . . . 9 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
3231zcnd 12608 . . . . . . . 8 ((𝜑𝑁𝑍) → 𝑁 ∈ ℂ)
3332addid1d 11355 . . . . . . 7 ((𝜑𝑁𝑍) → (𝑁 + 0) = 𝑁)
3433fveq2d 6846 . . . . . 6 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘(𝑁 + 0)) = (seq𝑀( + , 𝐹)‘𝑁))
3534oveq2d 7373 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
36 neg1rr 12268 . . . . . . . 8 -1 ∈ ℝ
37 neg1ne0 12269 . . . . . . . 8 -1 ≠ 0
38 reexpclz 13988 . . . . . . . 8 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ)
3936, 37, 31, 38mp3an12i 1465 . . . . . . 7 ((𝜑𝑁𝑍) → (-1↑𝑁) ∈ ℝ)
40 iseralt.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
41 iseralt.6 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
4230sselda 3944 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
43 reexpclz 13988 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℝ)
4436, 37, 42, 43mp3an12i 1465 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
45 iseralt.3 . . . . . . . . . . . 12 (𝜑𝐺:𝑍⟶ℝ)
4645ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
4744, 46remulcld 11185 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
4841, 47eqeltrd 2838 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4927, 40, 48serfre 13937 . . . . . . . 8 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
5049ffvelcdmda 7035 . . . . . . 7 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
5139, 50remulcld 11185 . . . . . 6 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
5251leidd 11721 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5335, 52eqbrtrd 5127 . . . 4 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5445ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝐺:𝑍⟶ℝ)
55 ax-1cn 11109 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
56552timesi 12291 . . . . . . . . . . . . . . 15 (2 · 1) = (1 + 1)
5756oveq2i 7368 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) + (2 · 1)) = ((𝑁 + (2 · 𝑛)) + (1 + 1))
58 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁𝑍) → 𝑁𝑍)
5958, 27eleqtrdi 2848 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑁𝑍) → 𝑁 ∈ (ℤ𝑀))
6059adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ (ℤ𝑀))
61 eluzelz 12773 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
6260, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6362zcnd 12608 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
64 2cn 12228 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
65 nn0cn 12423 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
6665adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
67 mulcl 11135 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
6864, 66, 67sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℂ)
6964, 55mulcli 11162 . . . . . . . . . . . . . . . 16 (2 · 1) ∈ ℂ
7069a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 1) ∈ ℂ)
7163, 68, 70addassd 11177 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (2 · 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
7257, 71eqtr3id 2790 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (1 + 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
73 2nn0 12430 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
74 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
75 nn0mulcl 12449 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
7673, 74, 75sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
77 uzaddcl 12829 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · 𝑛) ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7860, 76, 77syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7928, 78sselid 3942 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℤ)
8079zcnd 12608 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℂ)
81 1cnd 11150 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℂ)
8280, 81, 81addassd 11177 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = ((𝑁 + (2 · 𝑛)) + (1 + 1)))
83 2cnd 12231 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8483, 66, 81adddid 11179 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8584oveq2d 7373 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
8672, 82, 853eqtr4d 2786 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = (𝑁 + (2 · (𝑛 + 1))))
87 peano2nn0 12453 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
8887adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
89 nn0mulcl 12449 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (𝑛 + 1) ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
9073, 88, 89sylancr 587 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
91 uzaddcl 12829 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · (𝑛 + 1)) ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9260, 90, 91syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9392, 27eleqtrrdi 2849 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ 𝑍)
9486, 93eqeltrd 2838 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) ∈ 𝑍)
9554, 94ffvelcdmd 7036 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
96 peano2uz 12826 . . . . . . . . . . . . 13 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9778, 96syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9897, 27eleqtrrdi 2849 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ 𝑍)
9954, 98ffvelcdmd 7036 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
10095, 99resubcld 11583 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
101 0red 11158 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℝ)
10239adantr 481 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℝ)
10349ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10478, 27eleqtrrdi 2849 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ 𝑍)
105103, 104ffvelcdmd 7036 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℝ)
106102, 105remulcld 11185 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ)
107 fvoveq1 7380 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺‘(𝑘 + 1)) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
108 fveq2 6842 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺𝑘) = (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
109107, 108breq12d 5118 . . . . . . . . . . 11 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘) ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
110 iseralt.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
111110ralrimiva 3143 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
112111ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
113109, 112, 98rspcdva 3582 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
11495, 99suble0d 11746 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0 ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
115113, 114mpbird 256 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0)
116100, 101, 106, 115leadd2dd 11770 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0))
117 seqp1 13921 . . . . . . . . . . . . 13 (((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
11897, 117syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
119 seqp1 13921 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
12078, 119syl 17 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
121120oveq1d 7372 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
122118, 121eqtrd 2776 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
12386fveq2d 6846 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
124105recnd 11183 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℂ)
125 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐹𝑘) = (𝐹‘((𝑁 + (2 · 𝑛)) + 1)))
126 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (-1↑𝑘) = (-1↑((𝑁 + (2 · 𝑛)) + 1)))
127126, 108oveq12d 7375 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
128125, 127eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
12941ralrimiva 3143 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
130129ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
131128, 130, 98rspcdva 3582 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
132 neg1cn 12267 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
133132a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℂ)
13437a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ≠ 0)
135133, 134, 79expp1zd 14060 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -1))
13636a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℝ)
137136, 134, 79reexpclzd 14152 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℝ)
138137recnd 11183 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ)
139 mulcom 11137 . . . . . . . . . . . . . . . . . 18 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ -1 ∈ ℂ) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
140138, 132, 139sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
141138mulm1d 11607 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1 · (-1↑(𝑁 + (2 · 𝑛)))) = -(-1↑(𝑁 + (2 · 𝑛))))
142135, 140, 1413eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = -(-1↑(𝑁 + (2 · 𝑛))))
143142oveq1d 7372 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14499recnd 11183 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
145 mulneg12 11593 . . . . . . . . . . . . . . . 16 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
146138, 144, 145syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
147131, 143, 1463eqtrd 2780 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14899renegcld 11582 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
149137, 148remulcld 11185 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
150147, 149eqeltrd 2838 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
151150recnd 11183 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
152 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐹𝑘) = (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
153 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (-1↑𝑘) = (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)))
154 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐺𝑘) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
155153, 154oveq12d 7375 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
156152, 155eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
157156, 130, 94rspcdva 3582 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
15879peano2zd 12610 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ ℤ)
159133, 134, 158expp1zd 14060 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1))
160142oveq1d 7372 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1) = (-(-1↑(𝑁 + (2 · 𝑛))) · -1))
161 mul2neg 11594 . . . . . . . . . . . . . . . . . . 19 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ 1 ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
162138, 55, 161sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
163138mulid1d 11172 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · 1) = (-1↑(𝑁 + (2 · 𝑛))))
164162, 163eqtrd 2776 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1↑(𝑁 + (2 · 𝑛))))
165159, 160, 1643eqtrd 2780 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (-1↑(𝑁 + (2 · 𝑛))))
166165oveq1d 7372 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
167157, 166eqtrd 2776 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
168137, 95remulcld 11185 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
169167, 168eqeltrd 2838 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
170169recnd 11183 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
171124, 151, 170addassd 11177 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
172122, 123, 1713eqtr3d 2784 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
173172oveq2d 7373 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
174102recnd 11183 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
175150, 169readdcld 11184 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
176175recnd 11183 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℂ)
177174, 124, 176adddid 11179 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
178174, 151, 170adddid 11179 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
179147oveq2d 7373 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
180148recnd 11183 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
181174, 138, 180mulassd 11178 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
182179, 181eqtr4d 2779 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
18383, 63, 66adddid 11179 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑁 + 𝑛)) = ((2 · 𝑁) + (2 · 𝑛)))
184632timesd 12396 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑁) = (𝑁 + 𝑁))
185184oveq1d 7372 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑁) + (2 · 𝑛)) = ((𝑁 + 𝑁) + (2 · 𝑛)))
18663, 63, 68addassd 11177 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + 𝑁) + (2 · 𝑛)) = (𝑁 + (𝑁 + (2 · 𝑛))))
187183, 185, 1863eqtrrd 2781 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (𝑁 + (2 · 𝑛))) = (2 · (𝑁 + 𝑛)))
188187oveq2d 7373 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = (-1↑(2 · (𝑁 + 𝑛))))
189 expaddz 14012 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝑁 + (2 · 𝑛)) ∈ ℤ)) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
190133, 134, 62, 79, 189syl22anc 837 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
191 2z 12535 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
192191a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℤ)
193 nn0z 12524 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
194 zaddcl 12543 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 + 𝑛) ∈ ℤ)
19531, 193, 194syl2an 596 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + 𝑛) ∈ ℤ)
196 expmulz 14014 . . . . . . . . . . . . . . . . 17 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑁 + 𝑛) ∈ ℤ)) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
197133, 134, 192, 195, 196syl22anc 837 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
198 neg1sqe1 14100 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
199198oveq1i 7367 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑(𝑁 + 𝑛)) = (1↑(𝑁 + 𝑛))
200 1exp 13997 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 𝑛) ∈ ℤ → (1↑(𝑁 + 𝑛)) = 1)
201195, 200syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1↑(𝑁 + 𝑛)) = 1)
202199, 201eqtrid 2788 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑2)↑(𝑁 + 𝑛)) = 1)
203197, 202eqtrd 2776 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = 1)
204188, 190, 2033eqtr3d 2784 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) = 1)
205204oveq1d 7372 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
206180mulid2d 11173 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
207182, 205, 2063eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
208167oveq2d 7373 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
20995recnd 11183 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
210174, 138, 209mulassd 11178 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
211208, 210eqtr4d 2779 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
212204oveq1d 7372 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
213209mulid2d 11173 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
214211, 212, 2133eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
215207, 214oveq12d 7375 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
216144negcld 11499 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
217216, 209addcomd 11357 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
218209, 144negsubd 11518 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
219217, 218eqtrd 2776 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
220178, 215, 2193eqtrd 2780 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
221220oveq2d 7373 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
222173, 177, 2213eqtrrd 2781 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
223106recnd 11183 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℂ)
224223addid1d 11355 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
225116, 222, 2243brtr3d 5136 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
226103, 93ffvelcdmd 7036 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) ∈ ℝ)
227102, 226remulcld 11185 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ)
22851adantr 481 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
229 letr 11249 . . . . . . . 8 ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
230227, 106, 228, 229syl3anc 1371 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
231225, 230mpand 693 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
232231expcom 414 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑𝑁𝑍) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
233232a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
2348, 14, 20, 26, 53, 233nn0ind 12598 . . 3 (𝐾 ∈ ℕ0 → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
235234com12 32 . 2 ((𝜑𝑁𝑍) → (𝐾 ∈ ℕ0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2362353impia 1117 1 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wss 3910   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  -cneg 11386  2c2 12208  0cn0 12413  cz 12499  cuz 12763  seqcseq 13906  cexp 13967  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-exp 13968
This theorem is referenced by:  iseraltlem3  15568
  Copyright terms: Public domain W3C validator