MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem2 Structured version   Visualization version   GIF version

Theorem iseraltlem2 15403
Description: Lemma for iseralt 15405. The terms of an alternating series form a chain of inequalities in alternate terms, so that for example 𝑆(1) ≤ 𝑆(3) ≤ 𝑆(5) ≤ ... and ... ≤ 𝑆(4) ≤ 𝑆(2) ≤ 𝑆(0) (assuming 𝑀 = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseraltlem2 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝐾   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7292 . . . . . . . . . 10 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
2 2t0e0 12151 . . . . . . . . . 10 (2 · 0) = 0
31, 2eqtrdi 2795 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = 0)
43oveq2d 7300 . . . . . . . 8 (𝑥 = 0 → (𝑁 + (2 · 𝑥)) = (𝑁 + 0))
54fveq2d 6787 . . . . . . 7 (𝑥 = 0 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + 0)))
65oveq2d 7300 . . . . . 6 (𝑥 = 0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))))
76breq1d 5085 . . . . 5 (𝑥 = 0 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
87imbi2d 341 . . . 4 (𝑥 = 0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
9 oveq2 7292 . . . . . . . . 9 (𝑥 = 𝑛 → (2 · 𝑥) = (2 · 𝑛))
109oveq2d 7300 . . . . . . . 8 (𝑥 = 𝑛 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝑛)))
1110fveq2d 6787 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))))
1211oveq2d 7300 . . . . . 6 (𝑥 = 𝑛 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
1312breq1d 5085 . . . . 5 (𝑥 = 𝑛 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
1413imbi2d 341 . . . 4 (𝑥 = 𝑛 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
15 oveq2 7292 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (2 · 𝑥) = (2 · (𝑛 + 1)))
1615oveq2d 7300 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · (𝑛 + 1))))
1716fveq2d 6787 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
1817oveq2d 7300 . . . . . 6 (𝑥 = (𝑛 + 1) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
1918breq1d 5085 . . . . 5 (𝑥 = (𝑛 + 1) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2019imbi2d 341 . . . 4 (𝑥 = (𝑛 + 1) → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
21 oveq2 7292 . . . . . . . . 9 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
2221oveq2d 7300 . . . . . . . 8 (𝑥 = 𝐾 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝐾)))
2322fveq2d 6787 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))
2423oveq2d 7300 . . . . . 6 (𝑥 = 𝐾 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))
2524breq1d 5085 . . . . 5 (𝑥 = 𝐾 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2625imbi2d 341 . . . 4 (𝑥 = 𝐾 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
27 iseralt.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
28 uzssz 12612 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
2927, 28eqsstri 3956 . . . . . . . . . . 11 𝑍 ⊆ ℤ
3029a1i 11 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℤ)
3130sselda 3922 . . . . . . . . 9 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
3231zcnd 12436 . . . . . . . 8 ((𝜑𝑁𝑍) → 𝑁 ∈ ℂ)
3332addid1d 11184 . . . . . . 7 ((𝜑𝑁𝑍) → (𝑁 + 0) = 𝑁)
3433fveq2d 6787 . . . . . 6 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘(𝑁 + 0)) = (seq𝑀( + , 𝐹)‘𝑁))
3534oveq2d 7300 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
36 neg1rr 12097 . . . . . . . 8 -1 ∈ ℝ
37 neg1ne0 12098 . . . . . . . 8 -1 ≠ 0
38 reexpclz 13811 . . . . . . . 8 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ)
3936, 37, 31, 38mp3an12i 1464 . . . . . . 7 ((𝜑𝑁𝑍) → (-1↑𝑁) ∈ ℝ)
40 iseralt.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
41 iseralt.6 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
4230sselda 3922 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
43 reexpclz 13811 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℝ)
4436, 37, 42, 43mp3an12i 1464 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
45 iseralt.3 . . . . . . . . . . . 12 (𝜑𝐺:𝑍⟶ℝ)
4645ffvelrnda 6970 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
4744, 46remulcld 11014 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
4841, 47eqeltrd 2840 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4927, 40, 48serfre 13761 . . . . . . . 8 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
5049ffvelrnda 6970 . . . . . . 7 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
5139, 50remulcld 11014 . . . . . 6 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
5251leidd 11550 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5335, 52eqbrtrd 5097 . . . 4 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5445ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝐺:𝑍⟶ℝ)
55 ax-1cn 10938 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
56552timesi 12120 . . . . . . . . . . . . . . 15 (2 · 1) = (1 + 1)
5756oveq2i 7295 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) + (2 · 1)) = ((𝑁 + (2 · 𝑛)) + (1 + 1))
58 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁𝑍) → 𝑁𝑍)
5958, 27eleqtrdi 2850 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑁𝑍) → 𝑁 ∈ (ℤ𝑀))
6059adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ (ℤ𝑀))
61 eluzelz 12601 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
6260, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6362zcnd 12436 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
64 2cn 12057 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
65 nn0cn 12252 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
6665adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
67 mulcl 10964 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
6864, 66, 67sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℂ)
6964, 55mulcli 10991 . . . . . . . . . . . . . . . 16 (2 · 1) ∈ ℂ
7069a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 1) ∈ ℂ)
7163, 68, 70addassd 11006 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (2 · 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
7257, 71eqtr3id 2793 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (1 + 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
73 2nn0 12259 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
74 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
75 nn0mulcl 12278 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
7673, 74, 75sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
77 uzaddcl 12653 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · 𝑛) ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7860, 76, 77syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7928, 78sselid 3920 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℤ)
8079zcnd 12436 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℂ)
81 1cnd 10979 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℂ)
8280, 81, 81addassd 11006 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = ((𝑁 + (2 · 𝑛)) + (1 + 1)))
83 2cnd 12060 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8483, 66, 81adddid 11008 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8584oveq2d 7300 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
8672, 82, 853eqtr4d 2789 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = (𝑁 + (2 · (𝑛 + 1))))
87 peano2nn0 12282 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
8887adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
89 nn0mulcl 12278 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (𝑛 + 1) ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
9073, 88, 89sylancr 587 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
91 uzaddcl 12653 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · (𝑛 + 1)) ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9260, 90, 91syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9392, 27eleqtrrdi 2851 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ 𝑍)
9486, 93eqeltrd 2840 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) ∈ 𝑍)
9554, 94ffvelrnd 6971 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
96 peano2uz 12650 . . . . . . . . . . . . 13 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9778, 96syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9897, 27eleqtrrdi 2851 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ 𝑍)
9954, 98ffvelrnd 6971 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
10095, 99resubcld 11412 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
101 0red 10987 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℝ)
10239adantr 481 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℝ)
10349ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10478, 27eleqtrrdi 2851 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ 𝑍)
105103, 104ffvelrnd 6971 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℝ)
106102, 105remulcld 11014 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ)
107 fvoveq1 7307 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺‘(𝑘 + 1)) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
108 fveq2 6783 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺𝑘) = (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
109107, 108breq12d 5088 . . . . . . . . . . 11 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘) ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
110 iseralt.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
111110ralrimiva 3104 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
112111ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
113109, 112, 98rspcdva 3563 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
11495, 99suble0d 11575 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0 ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
115113, 114mpbird 256 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0)
116100, 101, 106, 115leadd2dd 11599 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0))
117 seqp1 13745 . . . . . . . . . . . . 13 (((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
11897, 117syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
119 seqp1 13745 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
12078, 119syl 17 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
121120oveq1d 7299 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
122118, 121eqtrd 2779 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
12386fveq2d 6787 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
124105recnd 11012 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℂ)
125 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐹𝑘) = (𝐹‘((𝑁 + (2 · 𝑛)) + 1)))
126 oveq2 7292 . . . . . . . . . . . . . . . . . 18 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (-1↑𝑘) = (-1↑((𝑁 + (2 · 𝑛)) + 1)))
127126, 108oveq12d 7302 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
128125, 127eqeq12d 2755 . . . . . . . . . . . . . . . 16 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
12941ralrimiva 3104 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
130129ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
131128, 130, 98rspcdva 3563 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
132 neg1cn 12096 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
133132a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℂ)
13437a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ≠ 0)
135133, 134, 79expp1zd 13882 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -1))
13636a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℝ)
137136, 134, 79reexpclzd 13973 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℝ)
138137recnd 11012 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ)
139 mulcom 10966 . . . . . . . . . . . . . . . . . 18 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ -1 ∈ ℂ) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
140138, 132, 139sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
141138mulm1d 11436 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1 · (-1↑(𝑁 + (2 · 𝑛)))) = -(-1↑(𝑁 + (2 · 𝑛))))
142135, 140, 1413eqtrd 2783 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = -(-1↑(𝑁 + (2 · 𝑛))))
143142oveq1d 7299 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14499recnd 11012 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
145 mulneg12 11422 . . . . . . . . . . . . . . . 16 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
146138, 144, 145syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
147131, 143, 1463eqtrd 2783 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14899renegcld 11411 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
149137, 148remulcld 11014 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
150147, 149eqeltrd 2840 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
151150recnd 11012 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
152 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐹𝑘) = (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
153 oveq2 7292 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (-1↑𝑘) = (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)))
154 fveq2 6783 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐺𝑘) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
155153, 154oveq12d 7302 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
156152, 155eqeq12d 2755 . . . . . . . . . . . . . . . 16 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
157156, 130, 94rspcdva 3563 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
15879peano2zd 12438 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ ℤ)
159133, 134, 158expp1zd 13882 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1))
160142oveq1d 7299 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1) = (-(-1↑(𝑁 + (2 · 𝑛))) · -1))
161 mul2neg 11423 . . . . . . . . . . . . . . . . . . 19 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ 1 ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
162138, 55, 161sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
163138mulid1d 11001 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · 1) = (-1↑(𝑁 + (2 · 𝑛))))
164162, 163eqtrd 2779 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1↑(𝑁 + (2 · 𝑛))))
165159, 160, 1643eqtrd 2783 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (-1↑(𝑁 + (2 · 𝑛))))
166165oveq1d 7299 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
167157, 166eqtrd 2779 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
168137, 95remulcld 11014 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
169167, 168eqeltrd 2840 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
170169recnd 11012 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
171124, 151, 170addassd 11006 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
172122, 123, 1713eqtr3d 2787 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
173172oveq2d 7300 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
174102recnd 11012 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
175150, 169readdcld 11013 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
176175recnd 11012 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℂ)
177174, 124, 176adddid 11008 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
178174, 151, 170adddid 11008 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
179147oveq2d 7300 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
180148recnd 11012 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
181174, 138, 180mulassd 11007 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
182179, 181eqtr4d 2782 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
18383, 63, 66adddid 11008 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑁 + 𝑛)) = ((2 · 𝑁) + (2 · 𝑛)))
184632timesd 12225 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑁) = (𝑁 + 𝑁))
185184oveq1d 7299 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑁) + (2 · 𝑛)) = ((𝑁 + 𝑁) + (2 · 𝑛)))
18663, 63, 68addassd 11006 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + 𝑁) + (2 · 𝑛)) = (𝑁 + (𝑁 + (2 · 𝑛))))
187183, 185, 1863eqtrrd 2784 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (𝑁 + (2 · 𝑛))) = (2 · (𝑁 + 𝑛)))
188187oveq2d 7300 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = (-1↑(2 · (𝑁 + 𝑛))))
189 expaddz 13836 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝑁 + (2 · 𝑛)) ∈ ℤ)) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
190133, 134, 62, 79, 189syl22anc 836 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
191 2z 12361 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
192191a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℤ)
193 nn0z 12352 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
194 zaddcl 12369 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 + 𝑛) ∈ ℤ)
19531, 193, 194syl2an 596 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + 𝑛) ∈ ℤ)
196 expmulz 13838 . . . . . . . . . . . . . . . . 17 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑁 + 𝑛) ∈ ℤ)) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
197133, 134, 192, 195, 196syl22anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
198 neg1sqe1 13922 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
199198oveq1i 7294 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑(𝑁 + 𝑛)) = (1↑(𝑁 + 𝑛))
200 1exp 13821 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 𝑛) ∈ ℤ → (1↑(𝑁 + 𝑛)) = 1)
201195, 200syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1↑(𝑁 + 𝑛)) = 1)
202199, 201eqtrid 2791 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑2)↑(𝑁 + 𝑛)) = 1)
203197, 202eqtrd 2779 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = 1)
204188, 190, 2033eqtr3d 2787 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) = 1)
205204oveq1d 7299 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
206180mulid2d 11002 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
207182, 205, 2063eqtrd 2783 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
208167oveq2d 7300 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
20995recnd 11012 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
210174, 138, 209mulassd 11007 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
211208, 210eqtr4d 2782 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
212204oveq1d 7299 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
213209mulid2d 11002 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
214211, 212, 2133eqtrd 2783 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
215207, 214oveq12d 7302 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
216144negcld 11328 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
217216, 209addcomd 11186 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
218209, 144negsubd 11347 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
219217, 218eqtrd 2779 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
220178, 215, 2193eqtrd 2783 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
221220oveq2d 7300 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
222173, 177, 2213eqtrrd 2784 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
223106recnd 11012 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℂ)
224223addid1d 11184 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
225116, 222, 2243brtr3d 5106 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
226103, 93ffvelrnd 6971 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) ∈ ℝ)
227102, 226remulcld 11014 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ)
22851adantr 481 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
229 letr 11078 . . . . . . . 8 ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
230227, 106, 228, 229syl3anc 1370 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
231225, 230mpand 692 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
232231expcom 414 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑𝑁𝑍) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
233232a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
2348, 14, 20, 26, 53, 233nn0ind 12424 . . 3 (𝐾 ∈ ℕ0 → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
235234com12 32 . 2 ((𝜑𝑁𝑍) → (𝐾 ∈ ℕ0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2362353impia 1116 1 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  wss 3888   class class class wbr 5075  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  cle 11019  cmin 11214  -cneg 11215  2c2 12037  0cn0 12242  cz 12328  cuz 12591  seqcseq 13730  cexp 13791  cli 15202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249  df-seq 13731  df-exp 13792
This theorem is referenced by:  iseraltlem3  15404
  Copyright terms: Public domain W3C validator