MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseraltlem2 Structured version   Visualization version   GIF version

Theorem iseraltlem2 15100
Description: Lemma for iseralt 15102. The terms of an alternating series form a chain of inequalities in alternate terms, so that for example 𝑆(1) ≤ 𝑆(3) ≤ 𝑆(5) ≤ ... and ... ≤ 𝑆(4) ≤ 𝑆(2) ≤ 𝑆(0) (assuming 𝑀 = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseraltlem2 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝐾   𝑘,𝑁   𝑘,𝑍

Proof of Theorem iseraltlem2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . . . . . . . 10 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
2 2t0e0 11856 . . . . . . . . . 10 (2 · 0) = 0
31, 2eqtrdi 2809 . . . . . . . . 9 (𝑥 = 0 → (2 · 𝑥) = 0)
43oveq2d 7172 . . . . . . . 8 (𝑥 = 0 → (𝑁 + (2 · 𝑥)) = (𝑁 + 0))
54fveq2d 6667 . . . . . . 7 (𝑥 = 0 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + 0)))
65oveq2d 7172 . . . . . 6 (𝑥 = 0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))))
76breq1d 5046 . . . . 5 (𝑥 = 0 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
87imbi2d 344 . . . 4 (𝑥 = 0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
9 oveq2 7164 . . . . . . . . 9 (𝑥 = 𝑛 → (2 · 𝑥) = (2 · 𝑛))
109oveq2d 7172 . . . . . . . 8 (𝑥 = 𝑛 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝑛)))
1110fveq2d 6667 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))))
1211oveq2d 7172 . . . . . 6 (𝑥 = 𝑛 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
1312breq1d 5046 . . . . 5 (𝑥 = 𝑛 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
1413imbi2d 344 . . . 4 (𝑥 = 𝑛 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
15 oveq2 7164 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (2 · 𝑥) = (2 · (𝑛 + 1)))
1615oveq2d 7172 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · (𝑛 + 1))))
1716fveq2d 6667 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
1817oveq2d 7172 . . . . . 6 (𝑥 = (𝑛 + 1) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
1918breq1d 5046 . . . . 5 (𝑥 = (𝑛 + 1) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2019imbi2d 344 . . . 4 (𝑥 = (𝑛 + 1) → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
21 oveq2 7164 . . . . . . . . 9 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
2221oveq2d 7172 . . . . . . . 8 (𝑥 = 𝐾 → (𝑁 + (2 · 𝑥)) = (𝑁 + (2 · 𝐾)))
2322fveq2d 6667 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥))) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾))))
2423oveq2d 7172 . . . . . 6 (𝑥 = 𝐾 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))))
2524breq1d 5046 . . . . 5 (𝑥 = 𝐾 → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ↔ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2625imbi2d 344 . . . 4 (𝑥 = 𝐾 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑥)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) ↔ ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
27 iseralt.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
28 uzssz 12316 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
2927, 28eqsstri 3928 . . . . . . . . . . 11 𝑍 ⊆ ℤ
3029a1i 11 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℤ)
3130sselda 3894 . . . . . . . . 9 ((𝜑𝑁𝑍) → 𝑁 ∈ ℤ)
3231zcnd 12140 . . . . . . . 8 ((𝜑𝑁𝑍) → 𝑁 ∈ ℂ)
3332addid1d 10891 . . . . . . 7 ((𝜑𝑁𝑍) → (𝑁 + 0) = 𝑁)
3433fveq2d 6667 . . . . . 6 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘(𝑁 + 0)) = (seq𝑀( + , 𝐹)‘𝑁))
3534oveq2d 7172 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
36 neg1rr 11802 . . . . . . . 8 -1 ∈ ℝ
37 neg1ne0 11803 . . . . . . . 8 -1 ≠ 0
38 reexpclz 13512 . . . . . . . 8 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ ℝ)
3936, 37, 31, 38mp3an12i 1462 . . . . . . 7 ((𝜑𝑁𝑍) → (-1↑𝑁) ∈ ℝ)
40 iseralt.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
41 iseralt.6 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
4230sselda 3894 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
43 reexpclz 13512 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ -1 ≠ 0 ∧ 𝑘 ∈ ℤ) → (-1↑𝑘) ∈ ℝ)
4436, 37, 42, 43mp3an12i 1462 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
45 iseralt.3 . . . . . . . . . . . 12 (𝜑𝐺:𝑍⟶ℝ)
4645ffvelrnda 6848 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
4744, 46remulcld 10722 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
4841, 47eqeltrd 2852 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
4927, 40, 48serfre 13462 . . . . . . . 8 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
5049ffvelrnda 6848 . . . . . . 7 ((𝜑𝑁𝑍) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
5139, 50remulcld 10722 . . . . . 6 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
5251leidd 11257 . . . . 5 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5335, 52eqbrtrd 5058 . . . 4 ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + 0))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
5445ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝐺:𝑍⟶ℝ)
55 ax-1cn 10646 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
56552timesi 11825 . . . . . . . . . . . . . . 15 (2 · 1) = (1 + 1)
5756oveq2i 7167 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) + (2 · 1)) = ((𝑁 + (2 · 𝑛)) + (1 + 1))
58 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑁𝑍) → 𝑁𝑍)
5958, 27eleqtrdi 2862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑁𝑍) → 𝑁 ∈ (ℤ𝑀))
6059adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ (ℤ𝑀))
61 eluzelz 12305 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
6260, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6362zcnd 12140 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℂ)
64 2cn 11762 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
65 nn0cn 11957 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
6665adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
67 mulcl 10672 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
6864, 66, 67sylancr 590 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℂ)
6964, 55mulcli 10699 . . . . . . . . . . . . . . . 16 (2 · 1) ∈ ℂ
7069a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 1) ∈ ℂ)
7163, 68, 70addassd 10714 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (2 · 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
7257, 71syl5eqr 2807 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + (1 + 1)) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
73 2nn0 11964 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ0
74 simpr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
75 nn0mulcl 11983 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
7673, 74, 75sylancr 590 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
77 uzaddcl 12357 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · 𝑛) ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7860, 76, 77syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀))
7928, 78sseldi 3892 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℤ)
8079zcnd 12140 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ ℂ)
81 1cnd 10687 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 1 ∈ ℂ)
8280, 81, 81addassd 10714 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = ((𝑁 + (2 · 𝑛)) + (1 + 1)))
83 2cnd 11765 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℂ)
8483, 66, 81adddid 10716 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
8584oveq2d 7172 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) = (𝑁 + ((2 · 𝑛) + (2 · 1))))
8672, 82, 853eqtr4d 2803 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) = (𝑁 + (2 · (𝑛 + 1))))
87 peano2nn0 11987 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
8887adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
89 nn0mulcl 11983 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (𝑛 + 1) ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
9073, 88, 89sylancr 590 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑛 + 1)) ∈ ℕ0)
91 uzaddcl 12357 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ𝑀) ∧ (2 · (𝑛 + 1)) ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9260, 90, 91syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ (ℤ𝑀))
9392, 27eleqtrrdi 2863 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · (𝑛 + 1))) ∈ 𝑍)
9486, 93eqeltrd 2852 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝑁 + (2 · 𝑛)) + 1) + 1) ∈ 𝑍)
9554, 94ffvelrnd 6849 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
96 peano2uz 12354 . . . . . . . . . . . . 13 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9778, 96syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀))
9897, 27eleqtrrdi 2863 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ 𝑍)
9954, 98ffvelrnd 6849 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
10095, 99resubcld 11119 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
101 0red 10695 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 0 ∈ ℝ)
10239adantr 484 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℝ)
10349ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10478, 27eleqtrrdi 2863 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (2 · 𝑛)) ∈ 𝑍)
105103, 104ffvelrnd 6849 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℝ)
106102, 105remulcld 10722 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ)
107 fvoveq1 7179 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺‘(𝑘 + 1)) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
108 fveq2 6663 . . . . . . . . . . . 12 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐺𝑘) = (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
109107, 108breq12d 5049 . . . . . . . . . . 11 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘) ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
110 iseralt.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
111110ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
112111ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
113109, 112, 98rspcdva 3545 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
11495, 99suble0d 11282 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0 ↔ (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ≤ (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
115113, 114mpbird 260 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ≤ 0)
116100, 101, 106, 115leadd2dd 11306 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) ≤ (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0))
117 seqp1 13446 . . . . . . . . . . . . 13 (((𝑁 + (2 · 𝑛)) + 1) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
11897, 117syl 17 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
119 seqp1 13446 . . . . . . . . . . . . . 14 ((𝑁 + (2 · 𝑛)) ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
12078, 119syl 17 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))))
121120oveq1d 7171 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((seq𝑀( + , 𝐹)‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
122118, 121eqtrd 2793 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
12386fveq2d 6667 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))))
124105recnd 10720 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) ∈ ℂ)
125 fveq2 6663 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (𝐹𝑘) = (𝐹‘((𝑁 + (2 · 𝑛)) + 1)))
126 oveq2 7164 . . . . . . . . . . . . . . . . . 18 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → (-1↑𝑘) = (-1↑((𝑁 + (2 · 𝑛)) + 1)))
127126, 108oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
128125, 127eqeq12d 2774 . . . . . . . . . . . . . . . 16 (𝑘 = ((𝑁 + (2 · 𝑛)) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
12941ralrimiva 3113 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
130129ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ∀𝑘𝑍 (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
131128, 130, 98rspcdva 3545 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
132 neg1cn 11801 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
133132a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℂ)
13437a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ≠ 0)
135133, 134, 79expp1zd 13582 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -1))
13636a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℝ)
137136, 134, 79reexpclzd 13673 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℝ)
138137recnd 10720 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ)
139 mulcom 10674 . . . . . . . . . . . . . . . . . 18 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ -1 ∈ ℂ) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
140138, 132, 139sylancl 589 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1 · (-1↑(𝑁 + (2 · 𝑛)))))
141138mulm1d 11143 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1 · (-1↑(𝑁 + (2 · 𝑛)))) = -(-1↑(𝑁 + (2 · 𝑛))))
142135, 140, 1413eqtrd 2797 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑((𝑁 + (2 · 𝑛)) + 1)) = -(-1↑(𝑁 + (2 · 𝑛))))
143142oveq1d 7171 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14499recnd 10720 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
145 mulneg12 11129 . . . . . . . . . . . . . . . 16 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ (𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
146138, 144, 145syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
147131, 143, 1463eqtrd 2797 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
14899renegcld 11118 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
149137, 148remulcld 10722 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) ∈ ℝ)
150147, 149eqeltrd 2852 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℝ)
151150recnd 10720 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
152 fveq2 6663 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐹𝑘) = (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
153 oveq2 7164 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (-1↑𝑘) = (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)))
154 fveq2 6663 . . . . . . . . . . . . . . . . . 18 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → (𝐺𝑘) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
155153, 154oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((-1↑𝑘) · (𝐺𝑘)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
156152, 155eqeq12d 2774 . . . . . . . . . . . . . . . 16 (𝑘 = (((𝑁 + (2 · 𝑛)) + 1) + 1) → ((𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)) ↔ (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
157156, 130, 94rspcdva 3545 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
15879peano2zd 12142 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + (2 · 𝑛)) + 1) ∈ ℤ)
159133, 134, 158expp1zd 13582 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1))
160142oveq1d 7171 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑((𝑁 + (2 · 𝑛)) + 1)) · -1) = (-(-1↑(𝑁 + (2 · 𝑛))) · -1))
161 mul2neg 11130 . . . . . . . . . . . . . . . . . . 19 (((-1↑(𝑁 + (2 · 𝑛))) ∈ ℂ ∧ 1 ∈ ℂ) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
162138, 55, 161sylancl 589 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = ((-1↑(𝑁 + (2 · 𝑛))) · 1))
163138mulid1d 10709 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · 1) = (-1↑(𝑁 + (2 · 𝑛))))
164162, 163eqtrd 2793 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(-1↑(𝑁 + (2 · 𝑛))) · -1) = (-1↑(𝑁 + (2 · 𝑛))))
165159, 160, 1643eqtrd 2797 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) = (-1↑(𝑁 + (2 · 𝑛))))
166165oveq1d 7171 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(((𝑁 + (2 · 𝑛)) + 1) + 1)) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
167157, 166eqtrd 2793 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) = ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
168137, 95remulcld 10722 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
169167, 168eqeltrd 2852 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℝ)
170169recnd 10720 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
171124, 151, 170addassd 10714 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
172122, 123, 1713eqtr3d 2801 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) = ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
173172oveq2d 7172 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) = ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
174102recnd 10720 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
175150, 169readdcld 10721 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℝ)
176175recnd 10720 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) ∈ ℂ)
177174, 124, 176adddid 10716 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛))) + ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))))
178174, 151, 170adddid 10716 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
179147oveq2d 7172 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
180148recnd 10720 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
181174, 138, 180mulassd 10715 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
182179, 181eqtr4d 2796 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
18383, 63, 66adddid 10716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · (𝑁 + 𝑛)) = ((2 · 𝑁) + (2 · 𝑛)))
184632timesd 11930 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (2 · 𝑁) = (𝑁 + 𝑁))
185184oveq1d 7171 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑁) + (2 · 𝑛)) = ((𝑁 + 𝑁) + (2 · 𝑛)))
18663, 63, 68addassd 10714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝑁 + 𝑁) + (2 · 𝑛)) = (𝑁 + (𝑁 + (2 · 𝑛))))
187183, 185, 1863eqtrrd 2798 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + (𝑁 + (2 · 𝑛))) = (2 · (𝑁 + 𝑛)))
188187oveq2d 7172 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = (-1↑(2 · (𝑁 + 𝑛))))
189 expaddz 13536 . . . . . . . . . . . . . . . 16 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝑁 + (2 · 𝑛)) ∈ ℤ)) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
190133, 134, 62, 79, 189syl22anc 837 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(𝑁 + (𝑁 + (2 · 𝑛)))) = ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))))
191 2z 12066 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
192191a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℤ)
193 nn0z 12057 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
194 zaddcl 12074 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 + 𝑛) ∈ ℤ)
19531, 193, 194syl2an 598 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝑁 + 𝑛) ∈ ℤ)
196 expmulz 13538 . . . . . . . . . . . . . . . . 17 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑁 + 𝑛) ∈ ℤ)) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
197133, 134, 192, 195, 196syl22anc 837 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = ((-1↑2)↑(𝑁 + 𝑛)))
198 neg1sqe1 13622 . . . . . . . . . . . . . . . . . 18 (-1↑2) = 1
199198oveq1i 7166 . . . . . . . . . . . . . . . . 17 ((-1↑2)↑(𝑁 + 𝑛)) = (1↑(𝑁 + 𝑛))
200 1exp 13521 . . . . . . . . . . . . . . . . . 18 ((𝑁 + 𝑛) ∈ ℤ → (1↑(𝑁 + 𝑛)) = 1)
201195, 200syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1↑(𝑁 + 𝑛)) = 1)
202199, 201syl5eq 2805 . . . . . . . . . . . . . . . 16 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑2)↑(𝑁 + 𝑛)) = 1)
203197, 202eqtrd 2793 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-1↑(2 · (𝑁 + 𝑛))) = 1)
204188, 190, 2033eqtr3d 2801 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) = 1)
205204oveq1d 7171 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
206180mulid2d 10710 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
207182, 205, 2063eqtrd 2797 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) = -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)))
208167oveq2d 7172 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
20995recnd 10720 . . . . . . . . . . . . . . 15 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) ∈ ℂ)
210174, 138, 209mulassd 10715 . . . . . . . . . . . . . 14 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((-1↑𝑁) · ((-1↑(𝑁 + (2 · 𝑛))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))))
211208, 210eqtr4d 2796 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
212204oveq1d 7171 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (-1↑(𝑁 + (2 · 𝑛)))) · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
213209mulid2d 10710 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (1 · (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
214211, 212, 2133eqtrd 2797 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))
215207, 214oveq12d 7174 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (𝐹‘((𝑁 + (2 · 𝑛)) + 1))) + ((-1↑𝑁) · (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))
216144negcld 11035 . . . . . . . . . . . . 13 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → -(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) ∈ ℂ)
217216, 209addcomd 10893 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
218209, 144negsubd 11054 . . . . . . . . . . . 12 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) + -(𝐺‘((𝑁 + (2 · 𝑛)) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
219217, 218eqtrd 2793 . . . . . . . . . . 11 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (-(𝐺‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
220178, 215, 2193eqtrd 2797 . . . . . . . . . 10 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1)))) = ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1))))
221220oveq2d 7172 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((-1↑𝑁) · ((𝐹‘((𝑁 + (2 · 𝑛)) + 1)) + (𝐹‘(((𝑁 + (2 · 𝑛)) + 1) + 1))))) = (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))))
222173, 177, 2213eqtrrd 2798 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + ((𝐺‘(((𝑁 + (2 · 𝑛)) + 1) + 1)) − (𝐺‘((𝑁 + (2 · 𝑛)) + 1)))) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))))
223106recnd 10720 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℂ)
224223addid1d 10891 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) + 0) = ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
225116, 222, 2243brtr3d 5067 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))))
226103, 93ffvelrnd 6849 . . . . . . . . 9 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1)))) ∈ ℝ)
227102, 226remulcld 10722 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ)
22851adantr 484 . . . . . . . 8 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ)
229 letr 10785 . . . . . . . 8 ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∈ ℝ ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) ∈ ℝ) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
230227, 106, 228, 229syl3anc 1368 . . . . . . 7 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → ((((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ∧ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
231225, 230mpand 694 . . . . . 6 (((𝜑𝑁𝑍) ∧ 𝑛 ∈ ℕ0) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
232231expcom 417 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑𝑁𝑍) → (((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
233232a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝑛)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))) → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · (𝑛 + 1))))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))))
2348, 14, 20, 26, 53, 233nn0ind 12129 . . 3 (𝐾 ∈ ℕ0 → ((𝜑𝑁𝑍) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
235234com12 32 . 2 ((𝜑𝑁𝑍) → (𝐾 ∈ ℕ0 → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁))))
2362353impia 1114 1 ((𝜑𝑁𝑍𝐾 ∈ ℕ0) → ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘(𝑁 + (2 · 𝐾)))) ≤ ((-1↑𝑁) · (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wss 3860   class class class wbr 5036  wf 6336  cfv 6340  (class class class)co 7156  cc 10586  cr 10587  0cc0 10588  1c1 10589   + caddc 10591   · cmul 10593  cle 10727  cmin 10921  -cneg 10922  2c2 11742  0cn0 11947  cz 12033  cuz 12295  seqcseq 13431  cexp 13492  cli 14902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-seq 13432  df-exp 13493
This theorem is referenced by:  iseraltlem3  15101
  Copyright terms: Public domain W3C validator