![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iihalf2 | Structured version Visualization version GIF version |
Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iihalf2 | ⊢ (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12367 | . . . . . 6 ⊢ 2 ∈ ℝ | |
2 | remulcl 11269 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ) | |
3 | 1, 2 | mpan 689 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ) |
4 | 1re 11290 | . . . . 5 ⊢ 1 ∈ ℝ | |
5 | resubcl 11600 | . . . . 5 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ) | |
6 | 3, 4, 5 | sylancl 585 | . . . 4 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ) |
7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ) |
8 | subge0 11803 | . . . . . . 7 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋))) | |
9 | 3, 4, 8 | sylancl 585 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋))) |
10 | 2pos 12396 | . . . . . . . 8 ⊢ 0 < 2 | |
11 | 1, 10 | pm3.2i 470 | . . . . . . 7 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
12 | ledivmul 12171 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋))) | |
13 | 4, 11, 12 | mp3an13 1452 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋))) |
14 | 9, 13 | bitr4d 282 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋)) |
15 | 14 | biimpar 477 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1)) |
16 | 15 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1)) |
17 | ax-1cn 11242 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
18 | 17 | 2timesi 12431 | . . . . . . . 8 ⊢ (2 · 1) = (1 + 1) |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (2 · 1) = (1 + 1)) |
20 | 19 | breq2d 5178 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1))) |
21 | lemul2 12147 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1))) | |
22 | 4, 11, 21 | mp3an23 1453 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1))) |
23 | lesubadd 11762 | . . . . . . . 8 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) | |
24 | 4, 4, 23 | mp3an23 1453 | . . . . . . 7 ⊢ ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) |
25 | 3, 24 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) |
26 | 20, 22, 25 | 3bitr4d 311 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1)) |
27 | 26 | biimpa 476 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1) |
28 | 27 | 3adant2 1131 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1) |
29 | 7, 16, 28 | 3jca 1128 | . 2 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1)) |
30 | halfre 12507 | . . 3 ⊢ (1 / 2) ∈ ℝ | |
31 | 30, 4 | elicc2i 13473 | . 2 ⊢ (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
32 | elicc01 13526 | . 2 ⊢ (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1)) | |
33 | 29, 31, 32 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 2c2 12348 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-icc 13414 |
This theorem is referenced by: iihalf2cn 24981 iihalf2cnOLD 24982 phtpycc 25042 copco 25070 pcohtpylem 25071 pcopt 25074 pcopt2 25075 pcorevlem 25078 |
Copyright terms: Public domain | W3C validator |