MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf2 Structured version   Visualization version   GIF version

Theorem iihalf2 22948
Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf2 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))

Proof of Theorem iihalf2
StepHypRef Expression
1 2re 11292 . . . . . 6 2 ∈ ℝ
2 remulcl 10223 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 670 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
4 1re 10241 . . . . 5 1 ∈ ℝ
5 resubcl 10547 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ)
63, 4, 5sylancl 574 . . . 4 (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ)
763ad2ant1 1127 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ)
8 subge0 10743 . . . . . . 7 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
93, 4, 8sylancl 574 . . . . . 6 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
10 2pos 11314 . . . . . . . 8 0 < 2
111, 10pm3.2i 456 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
12 ledivmul 11101 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
134, 11, 12mp3an13 1563 . . . . . 6 (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
149, 13bitr4d 271 . . . . 5 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋))
1514biimpar 463 . . . 4 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1))
16153adant3 1126 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1))
17 ax-1cn 10196 . . . . . . . . 9 1 ∈ ℂ
18172timesi 11350 . . . . . . . 8 (2 · 1) = (1 + 1)
1918a1i 11 . . . . . . 7 (𝑋 ∈ ℝ → (2 · 1) = (1 + 1))
2019breq2d 4798 . . . . . 6 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1)))
21 lemul2 11078 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
224, 11, 21mp3an23 1564 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
23 lesubadd 10702 . . . . . . . 8 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
244, 4, 23mp3an23 1564 . . . . . . 7 ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
253, 24syl 17 . . . . . 6 (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
2620, 22, 253bitr4d 300 . . . . 5 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1))
2726biimpa 462 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
28273adant2 1125 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
297, 16, 283jca 1122 . 2 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
30 halfre 11449 . . 3 (1 / 2) ∈ ℝ
3130, 4elicc2i 12440 . 2 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
32 0re 10242 . . 3 0 ∈ ℝ
3332, 4elicc2i 12440 . 2 (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
3429, 31, 333imtr4i 281 1 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  (class class class)co 6792  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  2c2 11272  [,]cicc 12379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-2 11281  df-icc 12383
This theorem is referenced by:  iihalf2cn  22949  phtpycc  23006  copco  23033  pcohtpylem  23034  pcopt  23037  pcopt2  23038  pcorevlem  23041
  Copyright terms: Public domain W3C validator