MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf2 Structured version   Visualization version   GIF version

Theorem iihalf2 24333
Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf2 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))

Proof of Theorem iihalf2
StepHypRef Expression
1 2re 12236 . . . . . 6 2 ∈ ℝ
2 remulcl 11145 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 688 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
4 1re 11164 . . . . 5 1 ∈ ℝ
5 resubcl 11474 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ)
63, 4, 5sylancl 586 . . . 4 (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ)
763ad2ant1 1133 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ)
8 subge0 11677 . . . . . . 7 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
93, 4, 8sylancl 586 . . . . . 6 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
10 2pos 12265 . . . . . . . 8 0 < 2
111, 10pm3.2i 471 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
12 ledivmul 12040 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
134, 11, 12mp3an13 1452 . . . . . 6 (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
149, 13bitr4d 281 . . . . 5 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋))
1514biimpar 478 . . . 4 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1))
16153adant3 1132 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1))
17 ax-1cn 11118 . . . . . . . . 9 1 ∈ ℂ
18172timesi 12300 . . . . . . . 8 (2 · 1) = (1 + 1)
1918a1i 11 . . . . . . 7 (𝑋 ∈ ℝ → (2 · 1) = (1 + 1))
2019breq2d 5122 . . . . . 6 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1)))
21 lemul2 12017 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
224, 11, 21mp3an23 1453 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
23 lesubadd 11636 . . . . . . . 8 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
244, 4, 23mp3an23 1453 . . . . . . 7 ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
253, 24syl 17 . . . . . 6 (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
2620, 22, 253bitr4d 310 . . . . 5 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1))
2726biimpa 477 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
28273adant2 1131 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
297, 16, 283jca 1128 . 2 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
30 halfre 12376 . . 3 (1 / 2) ∈ ℝ
3130, 4elicc2i 13340 . 2 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
32 elicc01 13393 . 2 (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
3329, 31, 323imtr4i 291 1 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5110  (class class class)co 7362  cr 11059  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065   < clt 11198  cle 11199  cmin 11394   / cdiv 11821  2c2 12217  [,]cicc 13277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-2 12225  df-icc 13281
This theorem is referenced by:  iihalf2cn  24334  phtpycc  24391  copco  24418  pcohtpylem  24419  pcopt  24422  pcopt2  24423  pcorevlem  24426
  Copyright terms: Public domain W3C validator