| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iihalf2 | Structured version Visualization version GIF version | ||
| Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iihalf2 | ⊢ (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12199 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 2 | remulcl 11091 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ) | |
| 3 | 1, 2 | mpan 690 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ) |
| 4 | 1re 11112 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 5 | resubcl 11425 | . . . . 5 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . 4 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ) |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ) |
| 8 | subge0 11630 | . . . . . . 7 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋))) | |
| 9 | 3, 4, 8 | sylancl 586 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋))) |
| 10 | 2pos 12228 | . . . . . . . 8 ⊢ 0 < 2 | |
| 11 | 1, 10 | pm3.2i 470 | . . . . . . 7 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 12 | ledivmul 11998 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋))) | |
| 13 | 4, 11, 12 | mp3an13 1454 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋))) |
| 14 | 9, 13 | bitr4d 282 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋)) |
| 15 | 14 | biimpar 477 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1)) |
| 16 | 15 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1)) |
| 17 | ax-1cn 11064 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 18 | 17 | 2timesi 12258 | . . . . . . . 8 ⊢ (2 · 1) = (1 + 1) |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (2 · 1) = (1 + 1)) |
| 20 | 19 | breq2d 5103 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1))) |
| 21 | lemul2 11974 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1))) | |
| 22 | 4, 11, 21 | mp3an23 1455 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1))) |
| 23 | lesubadd 11589 | . . . . . . . 8 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) | |
| 24 | 4, 4, 23 | mp3an23 1455 | . . . . . . 7 ⊢ ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) |
| 25 | 3, 24 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) |
| 26 | 20, 22, 25 | 3bitr4d 311 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1)) |
| 27 | 26 | biimpa 476 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1) |
| 28 | 27 | 3adant2 1131 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1) |
| 29 | 7, 16, 28 | 3jca 1128 | . 2 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1)) |
| 30 | halfre 12334 | . . 3 ⊢ (1 / 2) ∈ ℝ | |
| 31 | 30, 4 | elicc2i 13312 | . 2 ⊢ (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| 32 | elicc01 13366 | . 2 ⊢ (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1)) | |
| 33 | 29, 31, 32 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 2c2 12180 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-icc 13252 |
| This theorem is referenced by: iihalf2cn 24857 iihalf2cnOLD 24858 phtpycc 24918 copco 24946 pcohtpylem 24947 pcopt 24950 pcopt2 24951 pcorevlem 24954 |
| Copyright terms: Public domain | W3C validator |