MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf2 Structured version   Visualization version   GIF version

Theorem iihalf2 23539
Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf2 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))

Proof of Theorem iihalf2
StepHypRef Expression
1 2re 11714 . . . . . 6 2 ∈ ℝ
2 remulcl 10624 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 688 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
4 1re 10643 . . . . 5 1 ∈ ℝ
5 resubcl 10952 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ)
63, 4, 5sylancl 588 . . . 4 (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ)
763ad2ant1 1129 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ)
8 subge0 11155 . . . . . . 7 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
93, 4, 8sylancl 588 . . . . . 6 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
10 2pos 11743 . . . . . . . 8 0 < 2
111, 10pm3.2i 473 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
12 ledivmul 11518 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
134, 11, 12mp3an13 1448 . . . . . 6 (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
149, 13bitr4d 284 . . . . 5 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋))
1514biimpar 480 . . . 4 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1))
16153adant3 1128 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1))
17 ax-1cn 10597 . . . . . . . . 9 1 ∈ ℂ
18172timesi 11778 . . . . . . . 8 (2 · 1) = (1 + 1)
1918a1i 11 . . . . . . 7 (𝑋 ∈ ℝ → (2 · 1) = (1 + 1))
2019breq2d 5080 . . . . . 6 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1)))
21 lemul2 11495 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
224, 11, 21mp3an23 1449 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
23 lesubadd 11114 . . . . . . . 8 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
244, 4, 23mp3an23 1449 . . . . . . 7 ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
253, 24syl 17 . . . . . 6 (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
2620, 22, 253bitr4d 313 . . . . 5 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1))
2726biimpa 479 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
28273adant2 1127 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
297, 16, 283jca 1124 . 2 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
30 halfre 11854 . . 3 (1 / 2) ∈ ℝ
3130, 4elicc2i 12805 . 2 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
32 elicc01 12857 . 2 (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
3329, 31, 323imtr4i 294 1 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-icc 12748
This theorem is referenced by:  iihalf2cn  23540  phtpycc  23597  copco  23624  pcohtpylem  23625  pcopt  23628  pcopt2  23629  pcorevlem  23632
  Copyright terms: Public domain W3C validator