| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iihalf2 | Structured version Visualization version GIF version | ||
| Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| iihalf2 | ⊢ (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12267 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 2 | remulcl 11160 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ) | |
| 3 | 1, 2 | mpan 690 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ) |
| 4 | 1re 11181 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 5 | resubcl 11493 | . . . . 5 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ) | |
| 6 | 3, 4, 5 | sylancl 586 | . . . 4 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ) |
| 7 | 6 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ) |
| 8 | subge0 11698 | . . . . . . 7 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋))) | |
| 9 | 3, 4, 8 | sylancl 586 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋))) |
| 10 | 2pos 12296 | . . . . . . . 8 ⊢ 0 < 2 | |
| 11 | 1, 10 | pm3.2i 470 | . . . . . . 7 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 12 | ledivmul 12066 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋))) | |
| 13 | 4, 11, 12 | mp3an13 1454 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋))) |
| 14 | 9, 13 | bitr4d 282 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋)) |
| 15 | 14 | biimpar 477 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1)) |
| 16 | 15 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1)) |
| 17 | ax-1cn 11133 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 18 | 17 | 2timesi 12326 | . . . . . . . 8 ⊢ (2 · 1) = (1 + 1) |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝑋 ∈ ℝ → (2 · 1) = (1 + 1)) |
| 20 | 19 | breq2d 5122 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1))) |
| 21 | lemul2 12042 | . . . . . . 7 ⊢ ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1))) | |
| 22 | 4, 11, 21 | mp3an23 1455 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1))) |
| 23 | lesubadd 11657 | . . . . . . . 8 ⊢ (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) | |
| 24 | 4, 4, 23 | mp3an23 1455 | . . . . . . 7 ⊢ ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) |
| 25 | 3, 24 | syl 17 | . . . . . 6 ⊢ (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1))) |
| 26 | 20, 22, 25 | 3bitr4d 311 | . . . . 5 ⊢ (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1)) |
| 27 | 26 | biimpa 476 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1) |
| 28 | 27 | 3adant2 1131 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1) |
| 29 | 7, 16, 28 | 3jca 1128 | . 2 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1)) |
| 30 | halfre 12402 | . . 3 ⊢ (1 / 2) ∈ ℝ | |
| 31 | 30, 4 | elicc2i 13380 | . 2 ⊢ (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
| 32 | elicc01 13434 | . 2 ⊢ (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1)) | |
| 33 | 29, 31, 32 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 2c2 12248 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-icc 13320 |
| This theorem is referenced by: iihalf2cn 24836 iihalf2cnOLD 24837 phtpycc 24897 copco 24925 pcohtpylem 24926 pcopt 24929 pcopt2 24930 pcorevlem 24933 |
| Copyright terms: Public domain | W3C validator |