MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf2 Structured version   Visualization version   GIF version

Theorem iihalf2 23784
Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf2 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))

Proof of Theorem iihalf2
StepHypRef Expression
1 2re 11869 . . . . . 6 2 ∈ ℝ
2 remulcl 10779 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 690 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
4 1re 10798 . . . . 5 1 ∈ ℝ
5 resubcl 11107 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ)
63, 4, 5sylancl 589 . . . 4 (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ)
763ad2ant1 1135 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ)
8 subge0 11310 . . . . . . 7 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
93, 4, 8sylancl 589 . . . . . 6 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
10 2pos 11898 . . . . . . . 8 0 < 2
111, 10pm3.2i 474 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
12 ledivmul 11673 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
134, 11, 12mp3an13 1454 . . . . . 6 (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
149, 13bitr4d 285 . . . . 5 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋))
1514biimpar 481 . . . 4 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1))
16153adant3 1134 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1))
17 ax-1cn 10752 . . . . . . . . 9 1 ∈ ℂ
18172timesi 11933 . . . . . . . 8 (2 · 1) = (1 + 1)
1918a1i 11 . . . . . . 7 (𝑋 ∈ ℝ → (2 · 1) = (1 + 1))
2019breq2d 5051 . . . . . 6 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1)))
21 lemul2 11650 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
224, 11, 21mp3an23 1455 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
23 lesubadd 11269 . . . . . . . 8 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
244, 4, 23mp3an23 1455 . . . . . . 7 ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
253, 24syl 17 . . . . . 6 (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
2620, 22, 253bitr4d 314 . . . . 5 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1))
2726biimpa 480 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
28273adant2 1133 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
297, 16, 283jca 1130 . 2 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
30 halfre 12009 . . 3 (1 / 2) ∈ ℝ
3130, 4elicc2i 12966 . 2 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
32 elicc01 13019 . 2 (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
3329, 31, 323imtr4i 295 1 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5039  (class class class)co 7191  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027   / cdiv 11454  2c2 11850  [,]cicc 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-2 11858  df-icc 12907
This theorem is referenced by:  iihalf2cn  23785  phtpycc  23842  copco  23869  pcohtpylem  23870  pcopt  23873  pcopt2  23874  pcorevlem  23877
  Copyright terms: Public domain W3C validator