MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2xi Structured version   Visualization version   GIF version

Theorem mod2xi 17040
Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.)
Hypotheses
Ref Expression
modxai.1 𝑁 ∈ ℕ
modxai.2 𝐴 ∈ ℕ
modxai.3 𝐵 ∈ ℕ0
modxai.4 𝐷 ∈ ℤ
modxai.5 𝐾 ∈ ℕ0
modxai.6 𝑀 ∈ ℕ0
mod2xi.9 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
mod2xi.7 (2 · 𝐵) = 𝐸
mod2xi.8 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
Assertion
Ref Expression
mod2xi ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)

Proof of Theorem mod2xi
StepHypRef Expression
1 modxai.1 . 2 𝑁 ∈ ℕ
2 modxai.2 . 2 𝐴 ∈ ℕ
3 modxai.3 . 2 𝐵 ∈ ℕ0
4 modxai.4 . 2 𝐷 ∈ ℤ
5 modxai.5 . 2 𝐾 ∈ ℕ0
6 modxai.6 . 2 𝑀 ∈ ℕ0
7 mod2xi.9 . 2 ((𝐴𝐵) mod 𝑁) = (𝐾 mod 𝑁)
83nn0cni 12454 . . . 4 𝐵 ∈ ℂ
982timesi 12319 . . 3 (2 · 𝐵) = (𝐵 + 𝐵)
10 mod2xi.7 . . 3 (2 · 𝐵) = 𝐸
119, 10eqtr3i 2754 . 2 (𝐵 + 𝐵) = 𝐸
12 mod2xi.8 . 2 ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾)
131, 2, 3, 4, 5, 6, 3, 5, 7, 7, 11, 12modxai 17039 1 ((𝐴𝐸) mod 𝑁) = (𝑀 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387   + caddc 11071   · cmul 11073  cn 12186  2c2 12241  0cn0 12442  cz 12529   mod cmo 13831  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027
This theorem is referenced by:  mod2xnegi  17042  1259lem1  17101  1259lem2  17102  1259lem3  17103  1259lem4  17104  2503lem1  17107  2503lem2  17108  4001lem1  17111  4001lem2  17112  4001lem3  17113  2exp340mod341  47734  8exp8mod9  47737
  Copyright terms: Public domain W3C validator