Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mod2xi | Structured version Visualization version GIF version |
Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
Ref | Expression |
---|---|
modxai.1 | ⊢ 𝑁 ∈ ℕ |
modxai.2 | ⊢ 𝐴 ∈ ℕ |
modxai.3 | ⊢ 𝐵 ∈ ℕ0 |
modxai.4 | ⊢ 𝐷 ∈ ℤ |
modxai.5 | ⊢ 𝐾 ∈ ℕ0 |
modxai.6 | ⊢ 𝑀 ∈ ℕ0 |
mod2xi.9 | ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) |
mod2xi.7 | ⊢ (2 · 𝐵) = 𝐸 |
mod2xi.8 | ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) |
Ref | Expression |
---|---|
mod2xi | ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.1 | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | modxai.2 | . 2 ⊢ 𝐴 ∈ ℕ | |
3 | modxai.3 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
4 | modxai.4 | . 2 ⊢ 𝐷 ∈ ℤ | |
5 | modxai.5 | . 2 ⊢ 𝐾 ∈ ℕ0 | |
6 | modxai.6 | . 2 ⊢ 𝑀 ∈ ℕ0 | |
7 | mod2xi.9 | . 2 ⊢ ((𝐴↑𝐵) mod 𝑁) = (𝐾 mod 𝑁) | |
8 | 3 | nn0cni 12273 | . . . 4 ⊢ 𝐵 ∈ ℂ |
9 | 8 | 2timesi 12139 | . . 3 ⊢ (2 · 𝐵) = (𝐵 + 𝐵) |
10 | mod2xi.7 | . . 3 ⊢ (2 · 𝐵) = 𝐸 | |
11 | 9, 10 | eqtr3i 2763 | . 2 ⊢ (𝐵 + 𝐵) = 𝐸 |
12 | mod2xi.8 | . 2 ⊢ ((𝐷 · 𝑁) + 𝑀) = (𝐾 · 𝐾) | |
13 | 1, 2, 3, 4, 5, 6, 3, 5, 7, 7, 11, 12 | modxai 16797 | 1 ⊢ ((𝐴↑𝐸) mod 𝑁) = (𝑀 mod 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 (class class class)co 7295 + caddc 10902 · cmul 10904 ℕcn 12001 2c2 12056 ℕ0cn0 12261 ℤcz 12347 mod cmo 13617 ↑cexp 13810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-fl 13540 df-mod 13618 df-seq 13750 df-exp 13811 |
This theorem is referenced by: mod2xnegi 16800 1259lem1 16860 1259lem2 16861 1259lem3 16862 1259lem4 16863 2503lem1 16866 2503lem2 16867 4001lem1 16870 4001lem2 16871 4001lem3 16872 2exp340mod341 45225 8exp8mod9 45228 |
Copyright terms: Public domain | W3C validator |