![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mod2xi | Structured version Visualization version GIF version |
Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
Ref | Expression |
---|---|
modxai.1 | โข ๐ โ โ |
modxai.2 | โข ๐ด โ โ |
modxai.3 | โข ๐ต โ โ0 |
modxai.4 | โข ๐ท โ โค |
modxai.5 | โข ๐พ โ โ0 |
modxai.6 | โข ๐ โ โ0 |
mod2xi.9 | โข ((๐ดโ๐ต) mod ๐) = (๐พ mod ๐) |
mod2xi.7 | โข (2 ยท ๐ต) = ๐ธ |
mod2xi.8 | โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐พ) |
Ref | Expression |
---|---|
mod2xi | โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.1 | . 2 โข ๐ โ โ | |
2 | modxai.2 | . 2 โข ๐ด โ โ | |
3 | modxai.3 | . 2 โข ๐ต โ โ0 | |
4 | modxai.4 | . 2 โข ๐ท โ โค | |
5 | modxai.5 | . 2 โข ๐พ โ โ0 | |
6 | modxai.6 | . 2 โข ๐ โ โ0 | |
7 | mod2xi.9 | . 2 โข ((๐ดโ๐ต) mod ๐) = (๐พ mod ๐) | |
8 | 3 | nn0cni 12432 | . . . 4 โข ๐ต โ โ |
9 | 8 | 2timesi 12298 | . . 3 โข (2 ยท ๐ต) = (๐ต + ๐ต) |
10 | mod2xi.7 | . . 3 โข (2 ยท ๐ต) = ๐ธ | |
11 | 9, 10 | eqtr3i 2767 | . 2 โข (๐ต + ๐ต) = ๐ธ |
12 | mod2xi.8 | . 2 โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐พ) | |
13 | 1, 2, 3, 4, 5, 6, 3, 5, 7, 7, 11, 12 | modxai 16947 | 1 โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 โ wcel 2107 (class class class)co 7362 + caddc 11061 ยท cmul 11063 โcn 12160 2c2 12215 โ0cn0 12420 โคcz 12506 mod cmo 13781 โcexp 13974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-sup 9385 df-inf 9386 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-fl 13704 df-mod 13782 df-seq 13914 df-exp 13975 |
This theorem is referenced by: mod2xnegi 16950 1259lem1 17010 1259lem2 17011 1259lem3 17012 1259lem4 17013 2503lem1 17016 2503lem2 17017 4001lem1 17020 4001lem2 17021 4001lem3 17022 2exp340mod341 45999 8exp8mod9 46002 |
Copyright terms: Public domain | W3C validator |