![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mod2xi | Structured version Visualization version GIF version |
Description: Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
Ref | Expression |
---|---|
modxai.1 | โข ๐ โ โ |
modxai.2 | โข ๐ด โ โ |
modxai.3 | โข ๐ต โ โ0 |
modxai.4 | โข ๐ท โ โค |
modxai.5 | โข ๐พ โ โ0 |
modxai.6 | โข ๐ โ โ0 |
mod2xi.9 | โข ((๐ดโ๐ต) mod ๐) = (๐พ mod ๐) |
mod2xi.7 | โข (2 ยท ๐ต) = ๐ธ |
mod2xi.8 | โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐พ) |
Ref | Expression |
---|---|
mod2xi | โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modxai.1 | . 2 โข ๐ โ โ | |
2 | modxai.2 | . 2 โข ๐ด โ โ | |
3 | modxai.3 | . 2 โข ๐ต โ โ0 | |
4 | modxai.4 | . 2 โข ๐ท โ โค | |
5 | modxai.5 | . 2 โข ๐พ โ โ0 | |
6 | modxai.6 | . 2 โข ๐ โ โ0 | |
7 | mod2xi.9 | . 2 โข ((๐ดโ๐ต) mod ๐) = (๐พ mod ๐) | |
8 | 3 | nn0cni 12515 | . . . 4 โข ๐ต โ โ |
9 | 8 | 2timesi 12381 | . . 3 โข (2 ยท ๐ต) = (๐ต + ๐ต) |
10 | mod2xi.7 | . . 3 โข (2 ยท ๐ต) = ๐ธ | |
11 | 9, 10 | eqtr3i 2758 | . 2 โข (๐ต + ๐ต) = ๐ธ |
12 | mod2xi.8 | . 2 โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐พ) | |
13 | 1, 2, 3, 4, 5, 6, 3, 5, 7, 7, 11, 12 | modxai 17037 | 1 โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 โ wcel 2099 (class class class)co 7420 + caddc 11142 ยท cmul 11144 โcn 12243 2c2 12298 โ0cn0 12503 โคcz 12589 mod cmo 13867 โcexp 14059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 |
This theorem is referenced by: mod2xnegi 17040 1259lem1 17100 1259lem2 17101 1259lem3 17102 1259lem4 17103 2503lem1 17106 2503lem2 17107 4001lem1 17110 4001lem2 17111 4001lem3 17112 2exp340mod341 47073 8exp8mod9 47076 |
Copyright terms: Public domain | W3C validator |