MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem5 Structured version   Visualization version   GIF version

Theorem basellem5 27052
Description: Lemma for basel 27057. Using vieta1 26277, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem5 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Distinct variable groups:   𝑗,𝑘,𝑡,𝑛,𝑀   𝑗,𝑁,𝑘,𝑛,𝑡   𝑃,𝑘,𝑛   𝑇,𝑘
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (coeff‘𝑃) = (coeff‘𝑃)
2 eqid 2736 . . 3 (deg‘𝑃) = (deg‘𝑃)
3 eqid 2736 . . 3 (𝑃 “ {0}) = (𝑃 “ {0})
4 basel.n . . . . 5 𝑁 = ((2 · 𝑀) + 1)
5 basel.p . . . . 5 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
64, 5basellem2 27049 . . . 4 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
76simp1d 1142 . . 3 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
86simp2d 1143 . . . 4 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
9 nnnn0 12513 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
10 hashfz1 14369 . . . . 5 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
119, 10syl 17 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
12 fzfid 13996 . . . . 5 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
13 basel.t . . . . . 6 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
144, 5, 13basellem4 27051 . . . . 5 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
1512, 14hasheqf1od 14376 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = (♯‘(𝑃 “ {0})))
168, 11, 153eqtr2rd 2778 . . 3 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) = (deg‘𝑃))
17 id 22 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
188, 17eqeltrd 2835 . . 3 (𝑀 ∈ ℕ → (deg‘𝑃) ∈ ℕ)
191, 2, 3, 7, 16, 18vieta1 26277 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
20 id 22 . . 3 (𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2) → 𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2))
21 oveq1 7417 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
2221fvoveq1d 7432 . . . . . 6 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
2322oveq1d 7425 . . . . 5 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
24 ovex 7443 . . . . 5 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
2523, 13, 24fvmpt 6991 . . . 4 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
2625adantl 481 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
27 cnvimass 6074 . . . . 5 (𝑃 “ {0}) ⊆ dom 𝑃
28 plyf 26160 . . . . . 6 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
29 fdm 6720 . . . . . 6 (𝑃:ℂ⟶ℂ → dom 𝑃 = ℂ)
307, 28, 293syl 18 . . . . 5 (𝑀 ∈ ℕ → dom 𝑃 = ℂ)
3127, 30sseqtrid 4006 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ⊆ ℂ)
3231sselda 3963 . . 3 ((𝑀 ∈ ℕ ∧ 𝑥 ∈ (𝑃 “ {0})) → 𝑥 ∈ ℂ)
3320, 12, 14, 26, 32fsumf1o 15744 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2))
346simp3d 1144 . . . . . . 7 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
358oveq1d 7425 . . . . . . 7 (𝑀 ∈ ℕ → ((deg‘𝑃) − 1) = (𝑀 − 1))
3634, 35fveq12d 6888 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)))
37 nnm1nn0 12547 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
38 oveq2 7418 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (2 · 𝑛) = (2 · (𝑀 − 1)))
3938oveq2d 7426 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (𝑁C(2 · 𝑛)) = (𝑁C(2 · (𝑀 − 1))))
40 oveq2 7418 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (𝑀𝑛) = (𝑀 − (𝑀 − 1)))
4140oveq2d 7426 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (-1↑(𝑀𝑛)) = (-1↑(𝑀 − (𝑀 − 1))))
4239, 41oveq12d 7428 . . . . . . . 8 (𝑛 = (𝑀 − 1) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
43 eqid 2736 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
44 ovex 7443 . . . . . . . 8 ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) ∈ V
4542, 43, 44fvmpt 6991 . . . . . . 7 ((𝑀 − 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
4637, 45syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
47 nncn 12253 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
48 ax-1cn 11192 . . . . . . . . . . 11 1 ∈ ℂ
49 nncan 11517 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 − (𝑀 − 1)) = 1)
5047, 48, 49sylancl 586 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀 − (𝑀 − 1)) = 1)
5150oveq2d 7426 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = (-1↑1))
52 neg1cn 12359 . . . . . . . . . 10 -1 ∈ ℂ
53 exp1 14090 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑1) = -1)
5452, 53ax-mp 5 . . . . . . . . 9 (-1↑1) = -1
5551, 54eqtrdi 2787 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = -1)
5655oveq2d 7426 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = ((𝑁C(2 · (𝑀 − 1))) · -1))
57 2nn 12318 . . . . . . . . . . . . . 14 2 ∈ ℕ
58 nnmulcl 12269 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
5957, 58mpan 690 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
6059peano2nnd 12262 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
614, 60eqeltrid 2839 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
6261nnnn0d 12567 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
63 2z 12629 . . . . . . . . . . 11 2 ∈ ℤ
64 nnz 12614 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
65 peano2zm 12640 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
6664, 65syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
67 zmulcl 12646 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (2 · (𝑀 − 1)) ∈ ℤ)
6863, 66, 67sylancr 587 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℤ)
69 bccl 14345 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · (𝑀 − 1)) ∈ ℤ) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7062, 68, 69syl2anc 584 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7170nn0cnd 12569 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
72 mulcom 11220 . . . . . . . 8 (((𝑁C(2 · (𝑀 − 1))) ∈ ℂ ∧ -1 ∈ ℂ) → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7371, 52, 72sylancl 586 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7471mulm1d 11694 . . . . . . 7 (𝑀 ∈ ℕ → (-1 · (𝑁C(2 · (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7556, 73, 743eqtrd 2775 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7636, 46, 753eqtrd 2775 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = -(𝑁C(2 · (𝑀 − 1))))
7771negcld 11586 . . . . 5 (𝑀 ∈ ℕ → -(𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
7876, 77eqeltrd 2835 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) ∈ ℂ)
7934, 8fveq12d 6888 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀))
80 oveq2 7418 . . . . . . . . . 10 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
8180oveq2d 7426 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
82 oveq2 7418 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
8382oveq2d 7426 . . . . . . . . 9 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
8481, 83oveq12d 7428 . . . . . . . 8 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
85 ovex 7443 . . . . . . . 8 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
8684, 43, 85fvmpt 6991 . . . . . . 7 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
879, 86syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
8847subidd 11587 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
8988oveq2d 7426 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
90 exp0 14088 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
9152, 90ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
9289, 91eqtrdi 2787 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
9392oveq2d 7426 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
94 fz1ssfz0 13645 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
9559nnred 12260 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
9695lep1d 12178 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
9796, 4breqtrrdi 5166 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
98 nnuz 12900 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
9959, 98eleqtrdi 2845 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘1))
10061nnzd 12620 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
101 elfz5 13538 . . . . . . . . . . . . 13 (((2 · 𝑀) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10299, 100, 101syl2anc 584 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10397, 102mpbird 257 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (1...𝑁))
10494, 103sselid 3961 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
105 bccl2 14346 . . . . . . . . . 10 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
106104, 105syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
107106nncnd 12261 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
108107mulridd 11257 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
10993, 108eqtrd 2771 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = (𝑁C(2 · 𝑀)))
11079, 87, 1093eqtrd 2775 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = (𝑁C(2 · 𝑀)))
111110, 107eqeltrd 2835 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ∈ ℂ)
112106nnne0d 12295 . . . . 5 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
113110, 112eqnetrd 3000 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ≠ 0)
11478, 111, 113divnegd 12035 . . 3 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
11576negeqd 11481 . . . . 5 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = --(𝑁C(2 · (𝑀 − 1))))
11671negnegd 11590 . . . . 5 (𝑀 ∈ ℕ → --(𝑁C(2 · (𝑀 − 1))) = (𝑁C(2 · (𝑀 − 1))))
117115, 116eqtrd 2771 . . . 4 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = (𝑁C(2 · (𝑀 − 1))))
118117, 110oveq12d 7428 . . 3 (𝑀 ∈ ℕ → (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
119 bcm1k 14338 . . . . . . . . . 10 ((2 · 𝑀) ∈ (1...𝑁) → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
120103, 119syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
12159nncnd 12261 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℂ)
122 1cnd 11235 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ∈ ℂ)
123121, 122, 122pnncand 11638 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1)) = (1 + 1))
1244oveq1i 7420 . . . . . . . . . . . . . . . 16 (𝑁 − ((2 · 𝑀) − 1)) = (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1))
125 df-2 12308 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
126123, 124, 1253eqtr4g 2796 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) = 2)
127 2nn0 12523 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
128126, 127eqeltrdi 2843 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0)
129 nnm1nn0 12547 . . . . . . . . . . . . . . . 16 ((2 · 𝑀) ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
13059, 129syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
131 nn0sub 12556 . . . . . . . . . . . . . . 15 ((((2 · 𝑀) − 1) ∈ ℕ0𝑁 ∈ ℕ0) → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
132130, 62, 131syl2anc 584 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
133128, 132mpbird 257 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≤ 𝑁)
134472timesd 12489 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
135134oveq1d 7425 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 + 𝑀) − 1))
13647, 47, 122addsubd 11620 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑀 + 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
137135, 136eqtrd 2771 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
138 nn0nnaddcl 12537 . . . . . . . . . . . . . . . . 17 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℕ) → ((𝑀 − 1) + 𝑀) ∈ ℕ)
13937, 138mpancom 688 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((𝑀 − 1) + 𝑀) ∈ ℕ)
140137, 139eqeltrd 2835 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ)
141140, 98eleqtrdi 2845 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (ℤ‘1))
142 elfz5 13538 . . . . . . . . . . . . . 14 ((((2 · 𝑀) − 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
143141, 100, 142syl2anc 584 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
144133, 143mpbird 257 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (1...𝑁))
145 bcm1k 14338 . . . . . . . . . . . 12 (((2 · 𝑀) − 1) ∈ (1...𝑁) → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
146144, 145syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
147482timesi 12383 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
148147eqcomi 2745 . . . . . . . . . . . . . . 15 (1 + 1) = (2 · 1)
149148oveq2i 7421 . . . . . . . . . . . . . 14 ((2 · 𝑀) − (1 + 1)) = ((2 · 𝑀) − (2 · 1))
150121, 122, 122subsub4d 11630 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = ((2 · 𝑀) − (1 + 1)))
151 2cnd 12323 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 2 ∈ ℂ)
152151, 47, 122subdid 11698 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) = ((2 · 𝑀) − (2 · 1)))
153149, 150, 1523eqtr4a 2797 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = (2 · (𝑀 − 1)))
154153oveq2d 7426 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑁C(((2 · 𝑀) − 1) − 1)) = (𝑁C(2 · (𝑀 − 1))))
15561nncnd 12261 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℂ)
156140nncnd 12261 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℂ)
157155, 156, 122subsubd 11627 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = ((𝑁 − ((2 · 𝑀) − 1)) + 1))
158126oveq1d 7425 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = (2 + 1))
159 df-3 12309 . . . . . . . . . . . . . . 15 3 = (2 + 1)
160158, 159eqtr4di 2789 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = 3)
161157, 160eqtrd 2771 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = 3)
162161oveq1d 7425 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1)) = (3 / ((2 · 𝑀) − 1)))
163154, 162oveq12d 7428 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
164146, 163eqtrd 2771 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
165126oveq1d 7425 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀)) = (2 / (2 · 𝑀)))
166164, 165oveq12d 7428 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))) = (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))))
167 3re 12325 . . . . . . . . . . . 12 3 ∈ ℝ
168 nndivre 12286 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ ((2 · 𝑀) − 1) ∈ ℕ) → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
169167, 140, 168sylancr 587 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
170169recnd 11268 . . . . . . . . . 10 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℂ)
171 2re 12319 . . . . . . . . . . . 12 2 ∈ ℝ
172 nndivre 12286 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (2 · 𝑀) ∈ ℕ) → (2 / (2 · 𝑀)) ∈ ℝ)
173171, 59, 172sylancr 587 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℝ)
174173recnd 11268 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℂ)
17571, 170, 174mulassd 11263 . . . . . . . . 9 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
176120, 166, 1753eqtrd 2775 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
177 3cn 12326 . . . . . . . . . . . 12 3 ∈ ℂ
178177a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 3 ∈ ℂ)
179140nnne0d 12295 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≠ 0)
18059nnne0d 12295 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ≠ 0)
181178, 156, 151, 121, 179, 180divmuldivd 12063 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))))
182 3t2e6 12411 . . . . . . . . . . . 12 (3 · 2) = 6
183182a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 · 2) = 6)
184156, 121mulcomd 11261 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) · (2 · 𝑀)) = ((2 · 𝑀) · ((2 · 𝑀) − 1)))
185183, 184oveq12d 7428 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
186181, 185eqtrd 2771 . . . . . . . . 9 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
187186oveq2d 7426 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
188176, 187eqtrd 2771 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
189188oveq1d 7425 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))))
190 6re 12335 . . . . . . . . 9 6 ∈ ℝ
19159, 140nnmulcld 12298 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ)
192 nndivre 12286 . . . . . . . . 9 ((6 ∈ ℝ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ) → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
193190, 191, 192sylancr 587 . . . . . . . 8 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
194193recnd 11268 . . . . . . 7 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℂ)
195 nnm1nn0 12547 . . . . . . . . . . . . . 14 (((2 · 𝑀) − 1) ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
196140, 195syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
197153, 196eqeltrrd 2836 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℕ0)
198197nn0red 12568 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℝ)
199140nnred 12260 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℝ)
20061nnred 12260 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ)
201199ltm1d 12179 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) < ((2 · 𝑀) − 1))
202153, 201eqbrtrrd 5148 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) < ((2 · 𝑀) − 1))
203198, 199, 202ltled 11388 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ ((2 · 𝑀) − 1))
204198, 199, 200, 203, 133letrd 11397 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ 𝑁)
205 nn0uz 12899 . . . . . . . . . . . 12 0 = (ℤ‘0)
206197, 205eleqtrdi 2845 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (ℤ‘0))
207 elfz5 13538 . . . . . . . . . . 11 (((2 · (𝑀 − 1)) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
208206, 100, 207syl2anc 584 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
209204, 208mpbird 257 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (0...𝑁))
210 bccl2 14346 . . . . . . . . 9 ((2 · (𝑀 − 1)) ∈ (0...𝑁) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
211209, 210syl 17 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
212211nnne0d 12295 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ≠ 0)
213194, 71, 212divcan3d 12027 . . . . . 6 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
214189, 213eqtrd 2771 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
215214oveq2d 7426 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
216107, 71, 112, 212recdivd 12039 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
217191nncnd 12261 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ)
218191nnne0d 12295 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)
219 6cn 12336 . . . . . 6 6 ∈ ℂ
220 6nn 12334 . . . . . . 7 6 ∈ ℕ
221220nnne0i 12285 . . . . . 6 6 ≠ 0
222 recdiv 11952 . . . . . 6 (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
223219, 221, 222mpanl12 702 . . . . 5 ((((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
224217, 218, 223syl2anc 584 . . . 4 (𝑀 ∈ ℕ → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
225215, 216, 2243eqtr3d 2779 . . 3 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
226114, 118, 2253eqtrd 2775 . 2 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
22719, 33, 2263eqtr3d 2779 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  {csn 4606   class class class wbr 5124  cmpt 5206  ccnv 5658  dom cdm 5659  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  6c6 12304  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  cexp 14084  Ccbc 14325  chash 14353  Σcsu 15707  tanctan 16086  πcpi 16087  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-0p 25628  df-limc 25824  df-dv 25825  df-ply 26150  df-idp 26151  df-coe 26152  df-dgr 26153  df-quot 26256
This theorem is referenced by:  basellem8  27055
  Copyright terms: Public domain W3C validator