MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem5 Structured version   Visualization version   GIF version

Theorem basellem5 26434
Description: Lemma for basel 26439. Using vieta1 25672, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem5 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Distinct variable groups:   𝑗,𝑘,𝑡,𝑛,𝑀   𝑗,𝑁,𝑘,𝑛,𝑡   𝑃,𝑘,𝑛   𝑇,𝑘
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (coeff‘𝑃) = (coeff‘𝑃)
2 eqid 2736 . . 3 (deg‘𝑃) = (deg‘𝑃)
3 eqid 2736 . . 3 (𝑃 “ {0}) = (𝑃 “ {0})
4 basel.n . . . . 5 𝑁 = ((2 · 𝑀) + 1)
5 basel.p . . . . 5 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
64, 5basellem2 26431 . . . 4 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
76simp1d 1142 . . 3 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
86simp2d 1143 . . . 4 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
9 nnnn0 12420 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
10 hashfz1 14246 . . . . 5 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
119, 10syl 17 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
12 fzfid 13878 . . . . 5 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
13 basel.t . . . . . 6 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
144, 5, 13basellem4 26433 . . . . 5 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
1512, 14hasheqf1od 14253 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = (♯‘(𝑃 “ {0})))
168, 11, 153eqtr2rd 2783 . . 3 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) = (deg‘𝑃))
17 id 22 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
188, 17eqeltrd 2838 . . 3 (𝑀 ∈ ℕ → (deg‘𝑃) ∈ ℕ)
191, 2, 3, 7, 16, 18vieta1 25672 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
20 id 22 . . 3 (𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2) → 𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2))
21 oveq1 7364 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
2221fvoveq1d 7379 . . . . . 6 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
2322oveq1d 7372 . . . . 5 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
24 ovex 7390 . . . . 5 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
2523, 13, 24fvmpt 6948 . . . 4 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
2625adantl 482 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
27 cnvimass 6033 . . . . 5 (𝑃 “ {0}) ⊆ dom 𝑃
28 plyf 25559 . . . . . 6 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
29 fdm 6677 . . . . . 6 (𝑃:ℂ⟶ℂ → dom 𝑃 = ℂ)
307, 28, 293syl 18 . . . . 5 (𝑀 ∈ ℕ → dom 𝑃 = ℂ)
3127, 30sseqtrid 3996 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ⊆ ℂ)
3231sselda 3944 . . 3 ((𝑀 ∈ ℕ ∧ 𝑥 ∈ (𝑃 “ {0})) → 𝑥 ∈ ℂ)
3320, 12, 14, 26, 32fsumf1o 15608 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2))
346simp3d 1144 . . . . . . 7 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
358oveq1d 7372 . . . . . . 7 (𝑀 ∈ ℕ → ((deg‘𝑃) − 1) = (𝑀 − 1))
3634, 35fveq12d 6849 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)))
37 nnm1nn0 12454 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
38 oveq2 7365 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (2 · 𝑛) = (2 · (𝑀 − 1)))
3938oveq2d 7373 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (𝑁C(2 · 𝑛)) = (𝑁C(2 · (𝑀 − 1))))
40 oveq2 7365 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (𝑀𝑛) = (𝑀 − (𝑀 − 1)))
4140oveq2d 7373 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (-1↑(𝑀𝑛)) = (-1↑(𝑀 − (𝑀 − 1))))
4239, 41oveq12d 7375 . . . . . . . 8 (𝑛 = (𝑀 − 1) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
43 eqid 2736 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
44 ovex 7390 . . . . . . . 8 ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) ∈ V
4542, 43, 44fvmpt 6948 . . . . . . 7 ((𝑀 − 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
4637, 45syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
47 nncn 12161 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
48 ax-1cn 11109 . . . . . . . . . . 11 1 ∈ ℂ
49 nncan 11430 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 − (𝑀 − 1)) = 1)
5047, 48, 49sylancl 586 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀 − (𝑀 − 1)) = 1)
5150oveq2d 7373 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = (-1↑1))
52 neg1cn 12267 . . . . . . . . . 10 -1 ∈ ℂ
53 exp1 13973 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑1) = -1)
5452, 53ax-mp 5 . . . . . . . . 9 (-1↑1) = -1
5551, 54eqtrdi 2792 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = -1)
5655oveq2d 7373 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = ((𝑁C(2 · (𝑀 − 1))) · -1))
57 2nn 12226 . . . . . . . . . . . . . 14 2 ∈ ℕ
58 nnmulcl 12177 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
5957, 58mpan 688 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
6059peano2nnd 12170 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
614, 60eqeltrid 2842 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
6261nnnn0d 12473 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
63 2z 12535 . . . . . . . . . . 11 2 ∈ ℤ
64 nnz 12520 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
65 peano2zm 12546 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
6664, 65syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
67 zmulcl 12552 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (2 · (𝑀 − 1)) ∈ ℤ)
6863, 66, 67sylancr 587 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℤ)
69 bccl 14222 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · (𝑀 − 1)) ∈ ℤ) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7062, 68, 69syl2anc 584 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7170nn0cnd 12475 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
72 mulcom 11137 . . . . . . . 8 (((𝑁C(2 · (𝑀 − 1))) ∈ ℂ ∧ -1 ∈ ℂ) → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7371, 52, 72sylancl 586 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7471mulm1d 11607 . . . . . . 7 (𝑀 ∈ ℕ → (-1 · (𝑁C(2 · (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7556, 73, 743eqtrd 2780 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7636, 46, 753eqtrd 2780 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = -(𝑁C(2 · (𝑀 − 1))))
7771negcld 11499 . . . . 5 (𝑀 ∈ ℕ → -(𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
7876, 77eqeltrd 2838 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) ∈ ℂ)
7934, 8fveq12d 6849 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀))
80 oveq2 7365 . . . . . . . . . 10 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
8180oveq2d 7373 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
82 oveq2 7365 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
8382oveq2d 7373 . . . . . . . . 9 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
8481, 83oveq12d 7375 . . . . . . . 8 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
85 ovex 7390 . . . . . . . 8 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
8684, 43, 85fvmpt 6948 . . . . . . 7 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
879, 86syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
8847subidd 11500 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
8988oveq2d 7373 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
90 exp0 13971 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
9152, 90ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
9289, 91eqtrdi 2792 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
9392oveq2d 7373 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
94 fz1ssfz0 13537 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
9559nnred 12168 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
9695lep1d 12086 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
9796, 4breqtrrdi 5147 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
98 nnuz 12806 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
9959, 98eleqtrdi 2848 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘1))
10061nnzd 12526 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
101 elfz5 13433 . . . . . . . . . . . . 13 (((2 · 𝑀) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10299, 100, 101syl2anc 584 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10397, 102mpbird 256 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (1...𝑁))
10494, 103sselid 3942 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
105 bccl2 14223 . . . . . . . . . 10 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
106104, 105syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
107106nncnd 12169 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
108107mulid1d 11172 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
10993, 108eqtrd 2776 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = (𝑁C(2 · 𝑀)))
11079, 87, 1093eqtrd 2780 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = (𝑁C(2 · 𝑀)))
111110, 107eqeltrd 2838 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ∈ ℂ)
112106nnne0d 12203 . . . . 5 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
113110, 112eqnetrd 3011 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ≠ 0)
11478, 111, 113divnegd 11944 . . 3 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
11576negeqd 11395 . . . . 5 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = --(𝑁C(2 · (𝑀 − 1))))
11671negnegd 11503 . . . . 5 (𝑀 ∈ ℕ → --(𝑁C(2 · (𝑀 − 1))) = (𝑁C(2 · (𝑀 − 1))))
117115, 116eqtrd 2776 . . . 4 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = (𝑁C(2 · (𝑀 − 1))))
118117, 110oveq12d 7375 . . 3 (𝑀 ∈ ℕ → (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
119 bcm1k 14215 . . . . . . . . . 10 ((2 · 𝑀) ∈ (1...𝑁) → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
120103, 119syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
12159nncnd 12169 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℂ)
122 1cnd 11150 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ∈ ℂ)
123121, 122, 122pnncand 11551 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1)) = (1 + 1))
1244oveq1i 7367 . . . . . . . . . . . . . . . 16 (𝑁 − ((2 · 𝑀) − 1)) = (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1))
125 df-2 12216 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
126123, 124, 1253eqtr4g 2801 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) = 2)
127 2nn0 12430 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
128126, 127eqeltrdi 2846 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0)
129 nnm1nn0 12454 . . . . . . . . . . . . . . . 16 ((2 · 𝑀) ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
13059, 129syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
131 nn0sub 12463 . . . . . . . . . . . . . . 15 ((((2 · 𝑀) − 1) ∈ ℕ0𝑁 ∈ ℕ0) → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
132130, 62, 131syl2anc 584 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
133128, 132mpbird 256 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≤ 𝑁)
134472timesd 12396 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
135134oveq1d 7372 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 + 𝑀) − 1))
13647, 47, 122addsubd 11533 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑀 + 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
137135, 136eqtrd 2776 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
138 nn0nnaddcl 12444 . . . . . . . . . . . . . . . . 17 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℕ) → ((𝑀 − 1) + 𝑀) ∈ ℕ)
13937, 138mpancom 686 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((𝑀 − 1) + 𝑀) ∈ ℕ)
140137, 139eqeltrd 2838 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ)
141140, 98eleqtrdi 2848 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (ℤ‘1))
142 elfz5 13433 . . . . . . . . . . . . . 14 ((((2 · 𝑀) − 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
143141, 100, 142syl2anc 584 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
144133, 143mpbird 256 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (1...𝑁))
145 bcm1k 14215 . . . . . . . . . . . 12 (((2 · 𝑀) − 1) ∈ (1...𝑁) → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
146144, 145syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
147482timesi 12291 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
148147eqcomi 2745 . . . . . . . . . . . . . . 15 (1 + 1) = (2 · 1)
149148oveq2i 7368 . . . . . . . . . . . . . 14 ((2 · 𝑀) − (1 + 1)) = ((2 · 𝑀) − (2 · 1))
150121, 122, 122subsub4d 11543 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = ((2 · 𝑀) − (1 + 1)))
151 2cnd 12231 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 2 ∈ ℂ)
152151, 47, 122subdid 11611 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) = ((2 · 𝑀) − (2 · 1)))
153149, 150, 1523eqtr4a 2802 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = (2 · (𝑀 − 1)))
154153oveq2d 7373 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑁C(((2 · 𝑀) − 1) − 1)) = (𝑁C(2 · (𝑀 − 1))))
15561nncnd 12169 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℂ)
156140nncnd 12169 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℂ)
157155, 156, 122subsubd 11540 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = ((𝑁 − ((2 · 𝑀) − 1)) + 1))
158126oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = (2 + 1))
159 df-3 12217 . . . . . . . . . . . . . . 15 3 = (2 + 1)
160158, 159eqtr4di 2794 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = 3)
161157, 160eqtrd 2776 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = 3)
162161oveq1d 7372 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1)) = (3 / ((2 · 𝑀) − 1)))
163154, 162oveq12d 7375 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
164146, 163eqtrd 2776 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
165126oveq1d 7372 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀)) = (2 / (2 · 𝑀)))
166164, 165oveq12d 7375 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))) = (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))))
167 3re 12233 . . . . . . . . . . . 12 3 ∈ ℝ
168 nndivre 12194 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ ((2 · 𝑀) − 1) ∈ ℕ) → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
169167, 140, 168sylancr 587 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
170169recnd 11183 . . . . . . . . . 10 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℂ)
171 2re 12227 . . . . . . . . . . . 12 2 ∈ ℝ
172 nndivre 12194 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (2 · 𝑀) ∈ ℕ) → (2 / (2 · 𝑀)) ∈ ℝ)
173171, 59, 172sylancr 587 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℝ)
174173recnd 11183 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℂ)
17571, 170, 174mulassd 11178 . . . . . . . . 9 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
176120, 166, 1753eqtrd 2780 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
177 3cn 12234 . . . . . . . . . . . 12 3 ∈ ℂ
178177a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 3 ∈ ℂ)
179140nnne0d 12203 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≠ 0)
18059nnne0d 12203 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ≠ 0)
181178, 156, 151, 121, 179, 180divmuldivd 11972 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))))
182 3t2e6 12319 . . . . . . . . . . . 12 (3 · 2) = 6
183182a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 · 2) = 6)
184156, 121mulcomd 11176 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) · (2 · 𝑀)) = ((2 · 𝑀) · ((2 · 𝑀) − 1)))
185183, 184oveq12d 7375 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
186181, 185eqtrd 2776 . . . . . . . . 9 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
187186oveq2d 7373 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
188176, 187eqtrd 2776 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
189188oveq1d 7372 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))))
190 6re 12243 . . . . . . . . 9 6 ∈ ℝ
19159, 140nnmulcld 12206 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ)
192 nndivre 12194 . . . . . . . . 9 ((6 ∈ ℝ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ) → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
193190, 191, 192sylancr 587 . . . . . . . 8 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
194193recnd 11183 . . . . . . 7 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℂ)
195 nnm1nn0 12454 . . . . . . . . . . . . . 14 (((2 · 𝑀) − 1) ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
196140, 195syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
197153, 196eqeltrrd 2839 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℕ0)
198197nn0red 12474 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℝ)
199140nnred 12168 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℝ)
20061nnred 12168 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ)
201199ltm1d 12087 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) < ((2 · 𝑀) − 1))
202153, 201eqbrtrrd 5129 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) < ((2 · 𝑀) − 1))
203198, 199, 202ltled 11303 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ ((2 · 𝑀) − 1))
204198, 199, 200, 203, 133letrd 11312 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ 𝑁)
205 nn0uz 12805 . . . . . . . . . . . 12 0 = (ℤ‘0)
206197, 205eleqtrdi 2848 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (ℤ‘0))
207 elfz5 13433 . . . . . . . . . . 11 (((2 · (𝑀 − 1)) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
208206, 100, 207syl2anc 584 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
209204, 208mpbird 256 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (0...𝑁))
210 bccl2 14223 . . . . . . . . 9 ((2 · (𝑀 − 1)) ∈ (0...𝑁) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
211209, 210syl 17 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
212211nnne0d 12203 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ≠ 0)
213194, 71, 212divcan3d 11936 . . . . . 6 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
214189, 213eqtrd 2776 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
215214oveq2d 7373 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
216107, 71, 112, 212recdivd 11948 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
217191nncnd 12169 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ)
218191nnne0d 12203 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)
219 6cn 12244 . . . . . 6 6 ∈ ℂ
220 6nn 12242 . . . . . . 7 6 ∈ ℕ
221220nnne0i 12193 . . . . . 6 6 ≠ 0
222 recdiv 11861 . . . . . 6 (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
223219, 221, 222mpanl12 700 . . . . 5 ((((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
224217, 218, 223syl2anc 584 . . . 4 (𝑀 ∈ ℕ → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
225215, 216, 2243eqtr3d 2784 . . 3 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
226114, 118, 2253eqtrd 2780 . 2 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
22719, 33, 2263eqtr3d 2784 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  6c6 12212  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  cexp 13967  Ccbc 14202  chash 14230  Σcsu 15570  tanctan 15948  πcpi 15949  Polycply 25545  coeffccoe 25547  degcdgr 25548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-0p 25034  df-limc 25230  df-dv 25231  df-ply 25549  df-idp 25550  df-coe 25551  df-dgr 25552  df-quot 25651
This theorem is referenced by:  basellem8  26437
  Copyright terms: Public domain W3C validator