MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem5 Structured version   Visualization version   GIF version

Theorem basellem5 26825
Description: Lemma for basel 26830. Using vieta1 26061, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 Β· 𝑀) + 1)
basel.p 𝑃 = (𝑑 ∈ β„‚ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 Β· 𝑗)) Β· (-1↑(𝑀 βˆ’ 𝑗))) Β· (𝑑↑𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tanβ€˜((𝑛 Β· Ο€) / 𝑁))↑-2))
Assertion
Ref Expression
basellem5 (𝑀 ∈ β„• β†’ Ξ£π‘˜ ∈ (1...𝑀)((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2) = (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) / 6))
Distinct variable groups:   𝑗,π‘˜,𝑑,𝑛,𝑀   𝑗,𝑁,π‘˜,𝑛,𝑑   𝑃,π‘˜,𝑛   𝑇,π‘˜
Allowed substitution hints:   𝑃(𝑑,𝑗)   𝑇(𝑑,𝑗,𝑛)

Proof of Theorem basellem5
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (coeffβ€˜π‘ƒ) = (coeffβ€˜π‘ƒ)
2 eqid 2730 . . 3 (degβ€˜π‘ƒ) = (degβ€˜π‘ƒ)
3 eqid 2730 . . 3 (◑𝑃 β€œ {0}) = (◑𝑃 β€œ {0})
4 basel.n . . . . 5 𝑁 = ((2 Β· 𝑀) + 1)
5 basel.p . . . . 5 𝑃 = (𝑑 ∈ β„‚ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 Β· 𝑗)) Β· (-1↑(𝑀 βˆ’ 𝑗))) Β· (𝑑↑𝑗)))
64, 5basellem2 26822 . . . 4 (𝑀 ∈ β„• β†’ (𝑃 ∈ (Polyβ€˜β„‚) ∧ (degβ€˜π‘ƒ) = 𝑀 ∧ (coeffβ€˜π‘ƒ) = (𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))))
76simp1d 1140 . . 3 (𝑀 ∈ β„• β†’ 𝑃 ∈ (Polyβ€˜β„‚))
86simp2d 1141 . . . 4 (𝑀 ∈ β„• β†’ (degβ€˜π‘ƒ) = 𝑀)
9 nnnn0 12483 . . . . 5 (𝑀 ∈ β„• β†’ 𝑀 ∈ β„•0)
10 hashfz1 14310 . . . . 5 (𝑀 ∈ β„•0 β†’ (β™―β€˜(1...𝑀)) = 𝑀)
119, 10syl 17 . . . 4 (𝑀 ∈ β„• β†’ (β™―β€˜(1...𝑀)) = 𝑀)
12 fzfid 13942 . . . . 5 (𝑀 ∈ β„• β†’ (1...𝑀) ∈ Fin)
13 basel.t . . . . . 6 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tanβ€˜((𝑛 Β· Ο€) / 𝑁))↑-2))
144, 5, 13basellem4 26824 . . . . 5 (𝑀 ∈ β„• β†’ 𝑇:(1...𝑀)–1-1-ontoβ†’(◑𝑃 β€œ {0}))
1512, 14hasheqf1od 14317 . . . 4 (𝑀 ∈ β„• β†’ (β™―β€˜(1...𝑀)) = (β™―β€˜(◑𝑃 β€œ {0})))
168, 11, 153eqtr2rd 2777 . . 3 (𝑀 ∈ β„• β†’ (β™―β€˜(◑𝑃 β€œ {0})) = (degβ€˜π‘ƒ))
17 id 22 . . . 4 (𝑀 ∈ β„• β†’ 𝑀 ∈ β„•)
188, 17eqeltrd 2831 . . 3 (𝑀 ∈ β„• β†’ (degβ€˜π‘ƒ) ∈ β„•)
191, 2, 3, 7, 16, 18vieta1 26061 . 2 (𝑀 ∈ β„• β†’ Ξ£π‘₯ ∈ (◑𝑃 β€œ {0})π‘₯ = -(((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) / ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ))))
20 id 22 . . 3 (π‘₯ = ((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2) β†’ π‘₯ = ((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2))
21 oveq1 7418 . . . . . . 7 (𝑛 = π‘˜ β†’ (𝑛 Β· Ο€) = (π‘˜ Β· Ο€))
2221fvoveq1d 7433 . . . . . 6 (𝑛 = π‘˜ β†’ (tanβ€˜((𝑛 Β· Ο€) / 𝑁)) = (tanβ€˜((π‘˜ Β· Ο€) / 𝑁)))
2322oveq1d 7426 . . . . 5 (𝑛 = π‘˜ β†’ ((tanβ€˜((𝑛 Β· Ο€) / 𝑁))↑-2) = ((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2))
24 ovex 7444 . . . . 5 ((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2) ∈ V
2523, 13, 24fvmpt 6997 . . . 4 (π‘˜ ∈ (1...𝑀) β†’ (π‘‡β€˜π‘˜) = ((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2))
2625adantl 480 . . 3 ((𝑀 ∈ β„• ∧ π‘˜ ∈ (1...𝑀)) β†’ (π‘‡β€˜π‘˜) = ((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2))
27 cnvimass 6079 . . . . 5 (◑𝑃 β€œ {0}) βŠ† dom 𝑃
28 plyf 25947 . . . . . 6 (𝑃 ∈ (Polyβ€˜β„‚) β†’ 𝑃:β„‚βŸΆβ„‚)
29 fdm 6725 . . . . . 6 (𝑃:β„‚βŸΆβ„‚ β†’ dom 𝑃 = β„‚)
307, 28, 293syl 18 . . . . 5 (𝑀 ∈ β„• β†’ dom 𝑃 = β„‚)
3127, 30sseqtrid 4033 . . . 4 (𝑀 ∈ β„• β†’ (◑𝑃 β€œ {0}) βŠ† β„‚)
3231sselda 3981 . . 3 ((𝑀 ∈ β„• ∧ π‘₯ ∈ (◑𝑃 β€œ {0})) β†’ π‘₯ ∈ β„‚)
3320, 12, 14, 26, 32fsumf1o 15673 . 2 (𝑀 ∈ β„• β†’ Ξ£π‘₯ ∈ (◑𝑃 β€œ {0})π‘₯ = Ξ£π‘˜ ∈ (1...𝑀)((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2))
346simp3d 1142 . . . . . . 7 (𝑀 ∈ β„• β†’ (coeffβ€˜π‘ƒ) = (𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛)))))
358oveq1d 7426 . . . . . . 7 (𝑀 ∈ β„• β†’ ((degβ€˜π‘ƒ) βˆ’ 1) = (𝑀 βˆ’ 1))
3634, 35fveq12d 6897 . . . . . 6 (𝑀 ∈ β„• β†’ ((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) = ((𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))β€˜(𝑀 βˆ’ 1)))
37 nnm1nn0 12517 . . . . . . 7 (𝑀 ∈ β„• β†’ (𝑀 βˆ’ 1) ∈ β„•0)
38 oveq2 7419 . . . . . . . . . 10 (𝑛 = (𝑀 βˆ’ 1) β†’ (2 Β· 𝑛) = (2 Β· (𝑀 βˆ’ 1)))
3938oveq2d 7427 . . . . . . . . 9 (𝑛 = (𝑀 βˆ’ 1) β†’ (𝑁C(2 Β· 𝑛)) = (𝑁C(2 Β· (𝑀 βˆ’ 1))))
40 oveq2 7419 . . . . . . . . . 10 (𝑛 = (𝑀 βˆ’ 1) β†’ (𝑀 βˆ’ 𝑛) = (𝑀 βˆ’ (𝑀 βˆ’ 1)))
4140oveq2d 7427 . . . . . . . . 9 (𝑛 = (𝑀 βˆ’ 1) β†’ (-1↑(𝑀 βˆ’ 𝑛)) = (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1))))
4239, 41oveq12d 7429 . . . . . . . 8 (𝑛 = (𝑀 βˆ’ 1) β†’ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1)))))
43 eqid 2730 . . . . . . . 8 (𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛)))) = (𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))
44 ovex 7444 . . . . . . . 8 ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1)))) ∈ V
4542, 43, 44fvmpt 6997 . . . . . . 7 ((𝑀 βˆ’ 1) ∈ β„•0 β†’ ((𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))β€˜(𝑀 βˆ’ 1)) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1)))))
4637, 45syl 17 . . . . . 6 (𝑀 ∈ β„• β†’ ((𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))β€˜(𝑀 βˆ’ 1)) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1)))))
47 nncn 12224 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ 𝑀 ∈ β„‚)
48 ax-1cn 11170 . . . . . . . . . . 11 1 ∈ β„‚
49 nncan 11493 . . . . . . . . . . 11 ((𝑀 ∈ β„‚ ∧ 1 ∈ β„‚) β†’ (𝑀 βˆ’ (𝑀 βˆ’ 1)) = 1)
5047, 48, 49sylancl 584 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (𝑀 βˆ’ (𝑀 βˆ’ 1)) = 1)
5150oveq2d 7427 . . . . . . . . 9 (𝑀 ∈ β„• β†’ (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1))) = (-1↑1))
52 neg1cn 12330 . . . . . . . . . 10 -1 ∈ β„‚
53 exp1 14037 . . . . . . . . . 10 (-1 ∈ β„‚ β†’ (-1↑1) = -1)
5452, 53ax-mp 5 . . . . . . . . 9 (-1↑1) = -1
5551, 54eqtrdi 2786 . . . . . . . 8 (𝑀 ∈ β„• β†’ (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1))) = -1)
5655oveq2d 7427 . . . . . . 7 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1)))) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· -1))
57 2nn 12289 . . . . . . . . . . . . . 14 2 ∈ β„•
58 nnmulcl 12240 . . . . . . . . . . . . . 14 ((2 ∈ β„• ∧ 𝑀 ∈ β„•) β†’ (2 Β· 𝑀) ∈ β„•)
5957, 58mpan 686 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ∈ β„•)
6059peano2nnd 12233 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) + 1) ∈ β„•)
614, 60eqeltrid 2835 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ 𝑁 ∈ β„•)
6261nnnn0d 12536 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ 𝑁 ∈ β„•0)
63 2z 12598 . . . . . . . . . . 11 2 ∈ β„€
64 nnz 12583 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ 𝑀 ∈ β„€)
65 peano2zm 12609 . . . . . . . . . . . 12 (𝑀 ∈ β„€ β†’ (𝑀 βˆ’ 1) ∈ β„€)
6664, 65syl 17 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (𝑀 βˆ’ 1) ∈ β„€)
67 zmulcl 12615 . . . . . . . . . . 11 ((2 ∈ β„€ ∧ (𝑀 βˆ’ 1) ∈ β„€) β†’ (2 Β· (𝑀 βˆ’ 1)) ∈ β„€)
6863, 66, 67sylancr 585 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) ∈ β„€)
69 bccl 14286 . . . . . . . . . 10 ((𝑁 ∈ β„•0 ∧ (2 Β· (𝑀 βˆ’ 1)) ∈ β„€) β†’ (𝑁C(2 Β· (𝑀 βˆ’ 1))) ∈ β„•0)
7062, 68, 69syl2anc 582 . . . . . . . . 9 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· (𝑀 βˆ’ 1))) ∈ β„•0)
7170nn0cnd 12538 . . . . . . . 8 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· (𝑀 βˆ’ 1))) ∈ β„‚)
72 mulcom 11198 . . . . . . . 8 (((𝑁C(2 Β· (𝑀 βˆ’ 1))) ∈ β„‚ ∧ -1 ∈ β„‚) β†’ ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· -1) = (-1 Β· (𝑁C(2 Β· (𝑀 βˆ’ 1)))))
7371, 52, 72sylancl 584 . . . . . . 7 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· -1) = (-1 Β· (𝑁C(2 Β· (𝑀 βˆ’ 1)))))
7471mulm1d 11670 . . . . . . 7 (𝑀 ∈ β„• β†’ (-1 Β· (𝑁C(2 Β· (𝑀 βˆ’ 1)))) = -(𝑁C(2 Β· (𝑀 βˆ’ 1))))
7556, 73, 743eqtrd 2774 . . . . . 6 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (-1↑(𝑀 βˆ’ (𝑀 βˆ’ 1)))) = -(𝑁C(2 Β· (𝑀 βˆ’ 1))))
7636, 46, 753eqtrd 2774 . . . . 5 (𝑀 ∈ β„• β†’ ((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) = -(𝑁C(2 Β· (𝑀 βˆ’ 1))))
7771negcld 11562 . . . . 5 (𝑀 ∈ β„• β†’ -(𝑁C(2 Β· (𝑀 βˆ’ 1))) ∈ β„‚)
7876, 77eqeltrd 2831 . . . 4 (𝑀 ∈ β„• β†’ ((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) ∈ β„‚)
7934, 8fveq12d 6897 . . . . . 6 (𝑀 ∈ β„• β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = ((𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))β€˜π‘€))
80 oveq2 7419 . . . . . . . . . 10 (𝑛 = 𝑀 β†’ (2 Β· 𝑛) = (2 Β· 𝑀))
8180oveq2d 7427 . . . . . . . . 9 (𝑛 = 𝑀 β†’ (𝑁C(2 Β· 𝑛)) = (𝑁C(2 Β· 𝑀)))
82 oveq2 7419 . . . . . . . . . 10 (𝑛 = 𝑀 β†’ (𝑀 βˆ’ 𝑛) = (𝑀 βˆ’ 𝑀))
8382oveq2d 7427 . . . . . . . . 9 (𝑛 = 𝑀 β†’ (-1↑(𝑀 βˆ’ 𝑛)) = (-1↑(𝑀 βˆ’ 𝑀)))
8481, 83oveq12d 7429 . . . . . . . 8 (𝑛 = 𝑀 β†’ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))) = ((𝑁C(2 Β· 𝑀)) Β· (-1↑(𝑀 βˆ’ 𝑀))))
85 ovex 7444 . . . . . . . 8 ((𝑁C(2 Β· 𝑀)) Β· (-1↑(𝑀 βˆ’ 𝑀))) ∈ V
8684, 43, 85fvmpt 6997 . . . . . . 7 (𝑀 ∈ β„•0 β†’ ((𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))β€˜π‘€) = ((𝑁C(2 Β· 𝑀)) Β· (-1↑(𝑀 βˆ’ 𝑀))))
879, 86syl 17 . . . . . 6 (𝑀 ∈ β„• β†’ ((𝑛 ∈ β„•0 ↦ ((𝑁C(2 Β· 𝑛)) Β· (-1↑(𝑀 βˆ’ 𝑛))))β€˜π‘€) = ((𝑁C(2 Β· 𝑀)) Β· (-1↑(𝑀 βˆ’ 𝑀))))
8847subidd 11563 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (𝑀 βˆ’ 𝑀) = 0)
8988oveq2d 7427 . . . . . . . . 9 (𝑀 ∈ β„• β†’ (-1↑(𝑀 βˆ’ 𝑀)) = (-1↑0))
90 exp0 14035 . . . . . . . . . 10 (-1 ∈ β„‚ β†’ (-1↑0) = 1)
9152, 90ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
9289, 91eqtrdi 2786 . . . . . . . 8 (𝑀 ∈ β„• β†’ (-1↑(𝑀 βˆ’ 𝑀)) = 1)
9392oveq2d 7427 . . . . . . 7 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· 𝑀)) Β· (-1↑(𝑀 βˆ’ 𝑀))) = ((𝑁C(2 Β· 𝑀)) Β· 1))
94 fz1ssfz0 13601 . . . . . . . . . . 11 (1...𝑁) βŠ† (0...𝑁)
9559nnred 12231 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ∈ ℝ)
9695lep1d 12149 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ≀ ((2 Β· 𝑀) + 1))
9796, 4breqtrrdi 5189 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ≀ 𝑁)
98 nnuz 12869 . . . . . . . . . . . . . 14 β„• = (β„€β‰₯β€˜1)
9959, 98eleqtrdi 2841 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ∈ (β„€β‰₯β€˜1))
10061nnzd 12589 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ 𝑁 ∈ β„€)
101 elfz5 13497 . . . . . . . . . . . . 13 (((2 Β· 𝑀) ∈ (β„€β‰₯β€˜1) ∧ 𝑁 ∈ β„€) β†’ ((2 Β· 𝑀) ∈ (1...𝑁) ↔ (2 Β· 𝑀) ≀ 𝑁))
10299, 100, 101syl2anc 582 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) ∈ (1...𝑁) ↔ (2 Β· 𝑀) ≀ 𝑁))
10397, 102mpbird 256 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ∈ (1...𝑁))
10494, 103sselid 3979 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ∈ (0...𝑁))
105 bccl2 14287 . . . . . . . . . 10 ((2 Β· 𝑀) ∈ (0...𝑁) β†’ (𝑁C(2 Β· 𝑀)) ∈ β„•)
106104, 105syl 17 . . . . . . . . 9 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· 𝑀)) ∈ β„•)
107106nncnd 12232 . . . . . . . 8 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· 𝑀)) ∈ β„‚)
108107mulridd 11235 . . . . . . 7 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· 𝑀)) Β· 1) = (𝑁C(2 Β· 𝑀)))
10993, 108eqtrd 2770 . . . . . 6 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· 𝑀)) Β· (-1↑(𝑀 βˆ’ 𝑀))) = (𝑁C(2 Β· 𝑀)))
11079, 87, 1093eqtrd 2774 . . . . 5 (𝑀 ∈ β„• β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = (𝑁C(2 Β· 𝑀)))
111110, 107eqeltrd 2831 . . . 4 (𝑀 ∈ β„• β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) ∈ β„‚)
112106nnne0d 12266 . . . . 5 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· 𝑀)) β‰  0)
113110, 112eqnetrd 3006 . . . 4 (𝑀 ∈ β„• β†’ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) β‰  0)
11478, 111, 113divnegd 12007 . . 3 (𝑀 ∈ β„• β†’ -(((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) / ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ))) = (-((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) / ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ))))
11576negeqd 11458 . . . . 5 (𝑀 ∈ β„• β†’ -((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) = --(𝑁C(2 Β· (𝑀 βˆ’ 1))))
11671negnegd 11566 . . . . 5 (𝑀 ∈ β„• β†’ --(𝑁C(2 Β· (𝑀 βˆ’ 1))) = (𝑁C(2 Β· (𝑀 βˆ’ 1))))
117115, 116eqtrd 2770 . . . 4 (𝑀 ∈ β„• β†’ -((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) = (𝑁C(2 Β· (𝑀 βˆ’ 1))))
118117, 110oveq12d 7429 . . 3 (𝑀 ∈ β„• β†’ (-((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) / ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ))) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) / (𝑁C(2 Β· 𝑀))))
119 bcm1k 14279 . . . . . . . . . 10 ((2 Β· 𝑀) ∈ (1...𝑁) β†’ (𝑁C(2 Β· 𝑀)) = ((𝑁C((2 Β· 𝑀) βˆ’ 1)) Β· ((𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) / (2 Β· 𝑀))))
120103, 119syl 17 . . . . . . . . 9 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· 𝑀)) = ((𝑁C((2 Β· 𝑀) βˆ’ 1)) Β· ((𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) / (2 Β· 𝑀))))
12159nncnd 12232 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) ∈ β„‚)
122 1cnd 11213 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„• β†’ 1 ∈ β„‚)
123121, 122, 122pnncand 11614 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) + 1) βˆ’ ((2 Β· 𝑀) βˆ’ 1)) = (1 + 1))
1244oveq1i 7421 . . . . . . . . . . . . . . . 16 (𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) = (((2 Β· 𝑀) + 1) βˆ’ ((2 Β· 𝑀) βˆ’ 1))
125 df-2 12279 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
126123, 124, 1253eqtr4g 2795 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„• β†’ (𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) = 2)
127 2nn0 12493 . . . . . . . . . . . . . . 15 2 ∈ β„•0
128126, 127eqeltrdi 2839 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ (𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) ∈ β„•0)
129 nnm1nn0 12517 . . . . . . . . . . . . . . . 16 ((2 Β· 𝑀) ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ∈ β„•0)
13059, 129syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ∈ β„•0)
131 nn0sub 12526 . . . . . . . . . . . . . . 15 ((((2 Β· 𝑀) βˆ’ 1) ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ (((2 Β· 𝑀) βˆ’ 1) ≀ 𝑁 ↔ (𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) ∈ β„•0))
132130, 62, 131syl2anc 582 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) ≀ 𝑁 ↔ (𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) ∈ β„•0))
133128, 132mpbird 256 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ≀ 𝑁)
134472timesd 12459 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) = (𝑀 + 𝑀))
135134oveq1d 7426 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) = ((𝑀 + 𝑀) βˆ’ 1))
13647, 47, 122addsubd 11596 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„• β†’ ((𝑀 + 𝑀) βˆ’ 1) = ((𝑀 βˆ’ 1) + 𝑀))
137135, 136eqtrd 2770 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) = ((𝑀 βˆ’ 1) + 𝑀))
138 nn0nnaddcl 12507 . . . . . . . . . . . . . . . . 17 (((𝑀 βˆ’ 1) ∈ β„•0 ∧ 𝑀 ∈ β„•) β†’ ((𝑀 βˆ’ 1) + 𝑀) ∈ β„•)
13937, 138mpancom 684 . . . . . . . . . . . . . . . 16 (𝑀 ∈ β„• β†’ ((𝑀 βˆ’ 1) + 𝑀) ∈ β„•)
140137, 139eqeltrd 2831 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ∈ β„•)
141140, 98eleqtrdi 2841 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ∈ (β„€β‰₯β€˜1))
142 elfz5 13497 . . . . . . . . . . . . . 14 ((((2 Β· 𝑀) βˆ’ 1) ∈ (β„€β‰₯β€˜1) ∧ 𝑁 ∈ β„€) β†’ (((2 Β· 𝑀) βˆ’ 1) ∈ (1...𝑁) ↔ ((2 Β· 𝑀) βˆ’ 1) ≀ 𝑁))
143141, 100, 142syl2anc 582 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) ∈ (1...𝑁) ↔ ((2 Β· 𝑀) βˆ’ 1) ≀ 𝑁))
144133, 143mpbird 256 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ∈ (1...𝑁))
145 bcm1k 14279 . . . . . . . . . . . 12 (((2 Β· 𝑀) βˆ’ 1) ∈ (1...𝑁) β†’ (𝑁C((2 Β· 𝑀) βˆ’ 1)) = ((𝑁C(((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) Β· ((𝑁 βˆ’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) / ((2 Β· 𝑀) βˆ’ 1))))
146144, 145syl 17 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (𝑁C((2 Β· 𝑀) βˆ’ 1)) = ((𝑁C(((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) Β· ((𝑁 βˆ’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) / ((2 Β· 𝑀) βˆ’ 1))))
147482timesi 12354 . . . . . . . . . . . . . . . 16 (2 Β· 1) = (1 + 1)
148147eqcomi 2739 . . . . . . . . . . . . . . 15 (1 + 1) = (2 Β· 1)
149148oveq2i 7422 . . . . . . . . . . . . . 14 ((2 Β· 𝑀) βˆ’ (1 + 1)) = ((2 Β· 𝑀) βˆ’ (2 Β· 1))
150121, 122, 122subsub4d 11606 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1) = ((2 Β· 𝑀) βˆ’ (1 + 1)))
151 2cnd 12294 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„• β†’ 2 ∈ β„‚)
152151, 47, 122subdid 11674 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) = ((2 Β· 𝑀) βˆ’ (2 Β· 1)))
153149, 150, 1523eqtr4a 2796 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1) = (2 Β· (𝑀 βˆ’ 1)))
154153oveq2d 7427 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ (𝑁C(((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) = (𝑁C(2 Β· (𝑀 βˆ’ 1))))
15561nncnd 12232 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„• β†’ 𝑁 ∈ β„‚)
156140nncnd 12232 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ∈ β„‚)
157155, 156, 122subsubd 11603 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ (𝑁 βˆ’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) = ((𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) + 1))
158126oveq1d 7426 . . . . . . . . . . . . . . 15 (𝑀 ∈ β„• β†’ ((𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) + 1) = (2 + 1))
159 df-3 12280 . . . . . . . . . . . . . . 15 3 = (2 + 1)
160158, 159eqtr4di 2788 . . . . . . . . . . . . . 14 (𝑀 ∈ β„• β†’ ((𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) + 1) = 3)
161157, 160eqtrd 2770 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (𝑁 βˆ’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) = 3)
162161oveq1d 7426 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ ((𝑁 βˆ’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) / ((2 Β· 𝑀) βˆ’ 1)) = (3 / ((2 Β· 𝑀) βˆ’ 1)))
163154, 162oveq12d 7429 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ ((𝑁C(((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) Β· ((𝑁 βˆ’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1)) / ((2 Β· 𝑀) βˆ’ 1))) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (3 / ((2 Β· 𝑀) βˆ’ 1))))
164146, 163eqtrd 2770 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (𝑁C((2 Β· 𝑀) βˆ’ 1)) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (3 / ((2 Β· 𝑀) βˆ’ 1))))
165126oveq1d 7426 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ ((𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) / (2 Β· 𝑀)) = (2 / (2 Β· 𝑀)))
166164, 165oveq12d 7429 . . . . . . . . 9 (𝑀 ∈ β„• β†’ ((𝑁C((2 Β· 𝑀) βˆ’ 1)) Β· ((𝑁 βˆ’ ((2 Β· 𝑀) βˆ’ 1)) / (2 Β· 𝑀))) = (((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (3 / ((2 Β· 𝑀) βˆ’ 1))) Β· (2 / (2 Β· 𝑀))))
167 3re 12296 . . . . . . . . . . . 12 3 ∈ ℝ
168 nndivre 12257 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ ((2 Β· 𝑀) βˆ’ 1) ∈ β„•) β†’ (3 / ((2 Β· 𝑀) βˆ’ 1)) ∈ ℝ)
169167, 140, 168sylancr 585 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (3 / ((2 Β· 𝑀) βˆ’ 1)) ∈ ℝ)
170169recnd 11246 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (3 / ((2 Β· 𝑀) βˆ’ 1)) ∈ β„‚)
171 2re 12290 . . . . . . . . . . . 12 2 ∈ ℝ
172 nndivre 12257 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (2 Β· 𝑀) ∈ β„•) β†’ (2 / (2 Β· 𝑀)) ∈ ℝ)
173171, 59, 172sylancr 585 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (2 / (2 Β· 𝑀)) ∈ ℝ)
174173recnd 11246 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (2 / (2 Β· 𝑀)) ∈ β„‚)
17571, 170, 174mulassd 11241 . . . . . . . . 9 (𝑀 ∈ β„• β†’ (((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (3 / ((2 Β· 𝑀) βˆ’ 1))) Β· (2 / (2 Β· 𝑀))) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· ((3 / ((2 Β· 𝑀) βˆ’ 1)) Β· (2 / (2 Β· 𝑀)))))
176120, 166, 1753eqtrd 2774 . . . . . . . 8 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· 𝑀)) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· ((3 / ((2 Β· 𝑀) βˆ’ 1)) Β· (2 / (2 Β· 𝑀)))))
177 3cn 12297 . . . . . . . . . . . 12 3 ∈ β„‚
178177a1i 11 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ 3 ∈ β„‚)
179140nnne0d 12266 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) β‰  0)
18059nnne0d 12266 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (2 Β· 𝑀) β‰  0)
181178, 156, 151, 121, 179, 180divmuldivd 12035 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ ((3 / ((2 Β· 𝑀) βˆ’ 1)) Β· (2 / (2 Β· 𝑀))) = ((3 Β· 2) / (((2 Β· 𝑀) βˆ’ 1) Β· (2 Β· 𝑀))))
182 3t2e6 12382 . . . . . . . . . . . 12 (3 Β· 2) = 6
183182a1i 11 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (3 Β· 2) = 6)
184156, 121mulcomd 11239 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) Β· (2 Β· 𝑀)) = ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))
185183, 184oveq12d 7429 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ ((3 Β· 2) / (((2 Β· 𝑀) βˆ’ 1) Β· (2 Β· 𝑀))) = (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1))))
186181, 185eqtrd 2770 . . . . . . . . 9 (𝑀 ∈ β„• β†’ ((3 / ((2 Β· 𝑀) βˆ’ 1)) Β· (2 / (2 Β· 𝑀))) = (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1))))
187186oveq2d 7427 . . . . . . . 8 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· ((3 / ((2 Β· 𝑀) βˆ’ 1)) Β· (2 / (2 Β· 𝑀)))) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))))
188176, 187eqtrd 2770 . . . . . . 7 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· 𝑀)) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))))
189188oveq1d 7426 . . . . . 6 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· 𝑀)) / (𝑁C(2 Β· (𝑀 βˆ’ 1)))) = (((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))) / (𝑁C(2 Β· (𝑀 βˆ’ 1)))))
190 6re 12306 . . . . . . . . 9 6 ∈ ℝ
19159, 140nnmulcld 12269 . . . . . . . . 9 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) ∈ β„•)
192 nndivre 12257 . . . . . . . . 9 ((6 ∈ ℝ ∧ ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) ∈ β„•) β†’ (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1))) ∈ ℝ)
193190, 191, 192sylancr 585 . . . . . . . 8 (𝑀 ∈ β„• β†’ (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1))) ∈ ℝ)
194193recnd 11246 . . . . . . 7 (𝑀 ∈ β„• β†’ (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1))) ∈ β„‚)
195 nnm1nn0 12517 . . . . . . . . . . . . . 14 (((2 Β· 𝑀) βˆ’ 1) ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1) ∈ β„•0)
196140, 195syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1) ∈ β„•0)
197153, 196eqeltrrd 2832 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) ∈ β„•0)
198197nn0red 12537 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) ∈ ℝ)
199140nnred 12231 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) βˆ’ 1) ∈ ℝ)
20061nnred 12231 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ 𝑁 ∈ ℝ)
201199ltm1d 12150 . . . . . . . . . . . . 13 (𝑀 ∈ β„• β†’ (((2 Β· 𝑀) βˆ’ 1) βˆ’ 1) < ((2 Β· 𝑀) βˆ’ 1))
202153, 201eqbrtrrd 5171 . . . . . . . . . . . 12 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) < ((2 Β· 𝑀) βˆ’ 1))
203198, 199, 202ltled 11366 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) ≀ ((2 Β· 𝑀) βˆ’ 1))
204198, 199, 200, 203, 133letrd 11375 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) ≀ 𝑁)
205 nn0uz 12868 . . . . . . . . . . . 12 β„•0 = (β„€β‰₯β€˜0)
206197, 205eleqtrdi 2841 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) ∈ (β„€β‰₯β€˜0))
207 elfz5 13497 . . . . . . . . . . 11 (((2 Β· (𝑀 βˆ’ 1)) ∈ (β„€β‰₯β€˜0) ∧ 𝑁 ∈ β„€) β†’ ((2 Β· (𝑀 βˆ’ 1)) ∈ (0...𝑁) ↔ (2 Β· (𝑀 βˆ’ 1)) ≀ 𝑁))
208206, 100, 207syl2anc 582 . . . . . . . . . 10 (𝑀 ∈ β„• β†’ ((2 Β· (𝑀 βˆ’ 1)) ∈ (0...𝑁) ↔ (2 Β· (𝑀 βˆ’ 1)) ≀ 𝑁))
209204, 208mpbird 256 . . . . . . . . 9 (𝑀 ∈ β„• β†’ (2 Β· (𝑀 βˆ’ 1)) ∈ (0...𝑁))
210 bccl2 14287 . . . . . . . . 9 ((2 Β· (𝑀 βˆ’ 1)) ∈ (0...𝑁) β†’ (𝑁C(2 Β· (𝑀 βˆ’ 1))) ∈ β„•)
211209, 210syl 17 . . . . . . . 8 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· (𝑀 βˆ’ 1))) ∈ β„•)
212211nnne0d 12266 . . . . . . 7 (𝑀 ∈ β„• β†’ (𝑁C(2 Β· (𝑀 βˆ’ 1))) β‰  0)
213194, 71, 212divcan3d 11999 . . . . . 6 (𝑀 ∈ β„• β†’ (((𝑁C(2 Β· (𝑀 βˆ’ 1))) Β· (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))) / (𝑁C(2 Β· (𝑀 βˆ’ 1)))) = (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1))))
214189, 213eqtrd 2770 . . . . 5 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· 𝑀)) / (𝑁C(2 Β· (𝑀 βˆ’ 1)))) = (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1))))
215214oveq2d 7427 . . . 4 (𝑀 ∈ β„• β†’ (1 / ((𝑁C(2 Β· 𝑀)) / (𝑁C(2 Β· (𝑀 βˆ’ 1))))) = (1 / (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))))
216107, 71, 112, 212recdivd 12011 . . . 4 (𝑀 ∈ β„• β†’ (1 / ((𝑁C(2 Β· 𝑀)) / (𝑁C(2 Β· (𝑀 βˆ’ 1))))) = ((𝑁C(2 Β· (𝑀 βˆ’ 1))) / (𝑁C(2 Β· 𝑀))))
217191nncnd 12232 . . . . 5 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) ∈ β„‚)
218191nnne0d 12266 . . . . 5 (𝑀 ∈ β„• β†’ ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) β‰  0)
219 6cn 12307 . . . . . 6 6 ∈ β„‚
220 6nn 12305 . . . . . . 7 6 ∈ β„•
221220nnne0i 12256 . . . . . 6 6 β‰  0
222 recdiv 11924 . . . . . 6 (((6 ∈ β„‚ ∧ 6 β‰  0) ∧ (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) ∈ β„‚ ∧ ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) β‰  0)) β†’ (1 / (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))) = (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) / 6))
223219, 221, 222mpanl12 698 . . . . 5 ((((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) ∈ β„‚ ∧ ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) β‰  0) β†’ (1 / (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))) = (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) / 6))
224217, 218, 223syl2anc 582 . . . 4 (𝑀 ∈ β„• β†’ (1 / (6 / ((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)))) = (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) / 6))
225215, 216, 2243eqtr3d 2778 . . 3 (𝑀 ∈ β„• β†’ ((𝑁C(2 Β· (𝑀 βˆ’ 1))) / (𝑁C(2 Β· 𝑀))) = (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) / 6))
226114, 118, 2253eqtrd 2774 . 2 (𝑀 ∈ β„• β†’ -(((coeffβ€˜π‘ƒ)β€˜((degβ€˜π‘ƒ) βˆ’ 1)) / ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ))) = (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) / 6))
22719, 33, 2263eqtr3d 2778 1 (𝑀 ∈ β„• β†’ Ξ£π‘˜ ∈ (1...𝑀)((tanβ€˜((π‘˜ Β· Ο€) / 𝑁))↑-2) = (((2 Β· 𝑀) Β· ((2 Β· 𝑀) βˆ’ 1)) / 6))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  {csn 4627   class class class wbr 5147   ↦ cmpt 5230  β—‘ccnv 5674  dom cdm 5675   β€œ cima 5678  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  Fincfn 8941  β„‚cc 11110  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   Β· cmul 11117   < clt 11252   ≀ cle 11253   βˆ’ cmin 11448  -cneg 11449   / cdiv 11875  β„•cn 12216  2c2 12271  3c3 12272  6c6 12275  β„•0cn0 12476  β„€cz 12562  β„€β‰₯cuz 12826  ...cfz 13488  β†‘cexp 14031  Ccbc 14266  β™―chash 14294  Ξ£csu 15636  tanctan 16013  Ο€cpi 16014  Polycply 25933  coeffccoe 25935  degcdgr 25936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-ef 16015  df-sin 16017  df-cos 16018  df-tan 16019  df-pi 16020  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-0p 25419  df-limc 25615  df-dv 25616  df-ply 25937  df-idp 25938  df-coe 25939  df-dgr 25940  df-quot 26040
This theorem is referenced by:  basellem8  26828
  Copyright terms: Public domain W3C validator