MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem5 Structured version   Visualization version   GIF version

Theorem basellem5 27020
Description: Lemma for basel 27025. Using vieta1 26245, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem5 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Distinct variable groups:   𝑗,𝑘,𝑡,𝑛,𝑀   𝑗,𝑁,𝑘,𝑛,𝑡   𝑃,𝑘,𝑛   𝑇,𝑘
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (coeff‘𝑃) = (coeff‘𝑃)
2 eqid 2731 . . 3 (deg‘𝑃) = (deg‘𝑃)
3 eqid 2731 . . 3 (𝑃 “ {0}) = (𝑃 “ {0})
4 basel.n . . . . 5 𝑁 = ((2 · 𝑀) + 1)
5 basel.p . . . . 5 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
64, 5basellem2 27017 . . . 4 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
76simp1d 1142 . . 3 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
86simp2d 1143 . . . 4 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
9 nnnn0 12385 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
10 hashfz1 14250 . . . . 5 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
119, 10syl 17 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
12 fzfid 13877 . . . . 5 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
13 basel.t . . . . . 6 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
144, 5, 13basellem4 27019 . . . . 5 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
1512, 14hasheqf1od 14257 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = (♯‘(𝑃 “ {0})))
168, 11, 153eqtr2rd 2773 . . 3 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) = (deg‘𝑃))
17 id 22 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
188, 17eqeltrd 2831 . . 3 (𝑀 ∈ ℕ → (deg‘𝑃) ∈ ℕ)
191, 2, 3, 7, 16, 18vieta1 26245 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
20 id 22 . . 3 (𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2) → 𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2))
21 oveq1 7353 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
2221fvoveq1d 7368 . . . . . 6 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
2322oveq1d 7361 . . . . 5 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
24 ovex 7379 . . . . 5 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
2523, 13, 24fvmpt 6929 . . . 4 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
2625adantl 481 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
27 cnvimass 6031 . . . . 5 (𝑃 “ {0}) ⊆ dom 𝑃
28 plyf 26128 . . . . . 6 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
29 fdm 6660 . . . . . 6 (𝑃:ℂ⟶ℂ → dom 𝑃 = ℂ)
307, 28, 293syl 18 . . . . 5 (𝑀 ∈ ℕ → dom 𝑃 = ℂ)
3127, 30sseqtrid 3977 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ⊆ ℂ)
3231sselda 3934 . . 3 ((𝑀 ∈ ℕ ∧ 𝑥 ∈ (𝑃 “ {0})) → 𝑥 ∈ ℂ)
3320, 12, 14, 26, 32fsumf1o 15627 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2))
346simp3d 1144 . . . . . . 7 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
358oveq1d 7361 . . . . . . 7 (𝑀 ∈ ℕ → ((deg‘𝑃) − 1) = (𝑀 − 1))
3634, 35fveq12d 6829 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)))
37 nnm1nn0 12419 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
38 oveq2 7354 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (2 · 𝑛) = (2 · (𝑀 − 1)))
3938oveq2d 7362 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (𝑁C(2 · 𝑛)) = (𝑁C(2 · (𝑀 − 1))))
40 oveq2 7354 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (𝑀𝑛) = (𝑀 − (𝑀 − 1)))
4140oveq2d 7362 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (-1↑(𝑀𝑛)) = (-1↑(𝑀 − (𝑀 − 1))))
4239, 41oveq12d 7364 . . . . . . . 8 (𝑛 = (𝑀 − 1) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
43 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
44 ovex 7379 . . . . . . . 8 ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) ∈ V
4542, 43, 44fvmpt 6929 . . . . . . 7 ((𝑀 − 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
4637, 45syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
47 nncn 12130 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
48 ax-1cn 11061 . . . . . . . . . . 11 1 ∈ ℂ
49 nncan 11387 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 − (𝑀 − 1)) = 1)
5047, 48, 49sylancl 586 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀 − (𝑀 − 1)) = 1)
5150oveq2d 7362 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = (-1↑1))
52 neg1cn 12107 . . . . . . . . . 10 -1 ∈ ℂ
53 exp1 13971 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑1) = -1)
5452, 53ax-mp 5 . . . . . . . . 9 (-1↑1) = -1
5551, 54eqtrdi 2782 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = -1)
5655oveq2d 7362 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = ((𝑁C(2 · (𝑀 − 1))) · -1))
57 2nn 12195 . . . . . . . . . . . . . 14 2 ∈ ℕ
58 nnmulcl 12146 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
5957, 58mpan 690 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
6059peano2nnd 12139 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
614, 60eqeltrid 2835 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
6261nnnn0d 12439 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
63 2z 12501 . . . . . . . . . . 11 2 ∈ ℤ
64 nnz 12486 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
65 peano2zm 12512 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
6664, 65syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
67 zmulcl 12518 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (2 · (𝑀 − 1)) ∈ ℤ)
6863, 66, 67sylancr 587 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℤ)
69 bccl 14226 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · (𝑀 − 1)) ∈ ℤ) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7062, 68, 69syl2anc 584 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7170nn0cnd 12441 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
72 mulcom 11089 . . . . . . . 8 (((𝑁C(2 · (𝑀 − 1))) ∈ ℂ ∧ -1 ∈ ℂ) → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7371, 52, 72sylancl 586 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7471mulm1d 11566 . . . . . . 7 (𝑀 ∈ ℕ → (-1 · (𝑁C(2 · (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7556, 73, 743eqtrd 2770 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7636, 46, 753eqtrd 2770 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = -(𝑁C(2 · (𝑀 − 1))))
7771negcld 11456 . . . . 5 (𝑀 ∈ ℕ → -(𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
7876, 77eqeltrd 2831 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) ∈ ℂ)
7934, 8fveq12d 6829 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀))
80 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
8180oveq2d 7362 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
82 oveq2 7354 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
8382oveq2d 7362 . . . . . . . . 9 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
8481, 83oveq12d 7364 . . . . . . . 8 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
85 ovex 7379 . . . . . . . 8 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
8684, 43, 85fvmpt 6929 . . . . . . 7 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
879, 86syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
8847subidd 11457 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
8988oveq2d 7362 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
90 exp0 13969 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
9152, 90ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
9289, 91eqtrdi 2782 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
9392oveq2d 7362 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
94 fz1ssfz0 13520 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
9559nnred 12137 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
9695lep1d 12050 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
9796, 4breqtrrdi 5133 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
98 nnuz 12772 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
9959, 98eleqtrdi 2841 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘1))
10061nnzd 12492 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
101 elfz5 13413 . . . . . . . . . . . . 13 (((2 · 𝑀) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10299, 100, 101syl2anc 584 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10397, 102mpbird 257 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (1...𝑁))
10494, 103sselid 3932 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
105 bccl2 14227 . . . . . . . . . 10 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
106104, 105syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
107106nncnd 12138 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
108107mulridd 11126 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
10993, 108eqtrd 2766 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = (𝑁C(2 · 𝑀)))
11079, 87, 1093eqtrd 2770 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = (𝑁C(2 · 𝑀)))
111110, 107eqeltrd 2831 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ∈ ℂ)
112106nnne0d 12172 . . . . 5 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
113110, 112eqnetrd 2995 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ≠ 0)
11478, 111, 113divnegd 11907 . . 3 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
11576negeqd 11351 . . . . 5 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = --(𝑁C(2 · (𝑀 − 1))))
11671negnegd 11460 . . . . 5 (𝑀 ∈ ℕ → --(𝑁C(2 · (𝑀 − 1))) = (𝑁C(2 · (𝑀 − 1))))
117115, 116eqtrd 2766 . . . 4 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = (𝑁C(2 · (𝑀 − 1))))
118117, 110oveq12d 7364 . . 3 (𝑀 ∈ ℕ → (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
119 bcm1k 14219 . . . . . . . . . 10 ((2 · 𝑀) ∈ (1...𝑁) → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
120103, 119syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
12159nncnd 12138 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℂ)
122 1cnd 11104 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ∈ ℂ)
123121, 122, 122pnncand 11508 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1)) = (1 + 1))
1244oveq1i 7356 . . . . . . . . . . . . . . . 16 (𝑁 − ((2 · 𝑀) − 1)) = (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1))
125 df-2 12185 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
126123, 124, 1253eqtr4g 2791 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) = 2)
127 2nn0 12395 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
128126, 127eqeltrdi 2839 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0)
129 nnm1nn0 12419 . . . . . . . . . . . . . . . 16 ((2 · 𝑀) ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
13059, 129syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
131 nn0sub 12428 . . . . . . . . . . . . . . 15 ((((2 · 𝑀) − 1) ∈ ℕ0𝑁 ∈ ℕ0) → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
132130, 62, 131syl2anc 584 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
133128, 132mpbird 257 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≤ 𝑁)
134472timesd 12361 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
135134oveq1d 7361 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 + 𝑀) − 1))
13647, 47, 122addsubd 11490 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑀 + 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
137135, 136eqtrd 2766 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
138 nn0nnaddcl 12409 . . . . . . . . . . . . . . . . 17 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℕ) → ((𝑀 − 1) + 𝑀) ∈ ℕ)
13937, 138mpancom 688 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((𝑀 − 1) + 𝑀) ∈ ℕ)
140137, 139eqeltrd 2831 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ)
141140, 98eleqtrdi 2841 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (ℤ‘1))
142 elfz5 13413 . . . . . . . . . . . . . 14 ((((2 · 𝑀) − 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
143141, 100, 142syl2anc 584 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
144133, 143mpbird 257 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (1...𝑁))
145 bcm1k 14219 . . . . . . . . . . . 12 (((2 · 𝑀) − 1) ∈ (1...𝑁) → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
146144, 145syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
147482timesi 12255 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
148147eqcomi 2740 . . . . . . . . . . . . . . 15 (1 + 1) = (2 · 1)
149148oveq2i 7357 . . . . . . . . . . . . . 14 ((2 · 𝑀) − (1 + 1)) = ((2 · 𝑀) − (2 · 1))
150121, 122, 122subsub4d 11500 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = ((2 · 𝑀) − (1 + 1)))
151 2cnd 12200 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 2 ∈ ℂ)
152151, 47, 122subdid 11570 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) = ((2 · 𝑀) − (2 · 1)))
153149, 150, 1523eqtr4a 2792 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = (2 · (𝑀 − 1)))
154153oveq2d 7362 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑁C(((2 · 𝑀) − 1) − 1)) = (𝑁C(2 · (𝑀 − 1))))
15561nncnd 12138 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℂ)
156140nncnd 12138 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℂ)
157155, 156, 122subsubd 11497 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = ((𝑁 − ((2 · 𝑀) − 1)) + 1))
158126oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = (2 + 1))
159 df-3 12186 . . . . . . . . . . . . . . 15 3 = (2 + 1)
160158, 159eqtr4di 2784 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = 3)
161157, 160eqtrd 2766 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = 3)
162161oveq1d 7361 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1)) = (3 / ((2 · 𝑀) − 1)))
163154, 162oveq12d 7364 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
164146, 163eqtrd 2766 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
165126oveq1d 7361 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀)) = (2 / (2 · 𝑀)))
166164, 165oveq12d 7364 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))) = (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))))
167 3re 12202 . . . . . . . . . . . 12 3 ∈ ℝ
168 nndivre 12163 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ ((2 · 𝑀) − 1) ∈ ℕ) → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
169167, 140, 168sylancr 587 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
170169recnd 11137 . . . . . . . . . 10 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℂ)
171 2re 12196 . . . . . . . . . . . 12 2 ∈ ℝ
172 nndivre 12163 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (2 · 𝑀) ∈ ℕ) → (2 / (2 · 𝑀)) ∈ ℝ)
173171, 59, 172sylancr 587 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℝ)
174173recnd 11137 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℂ)
17571, 170, 174mulassd 11132 . . . . . . . . 9 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
176120, 166, 1753eqtrd 2770 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
177 3cn 12203 . . . . . . . . . . . 12 3 ∈ ℂ
178177a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 3 ∈ ℂ)
179140nnne0d 12172 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≠ 0)
18059nnne0d 12172 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ≠ 0)
181178, 156, 151, 121, 179, 180divmuldivd 11935 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))))
182 3t2e6 12283 . . . . . . . . . . . 12 (3 · 2) = 6
183182a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 · 2) = 6)
184156, 121mulcomd 11130 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) · (2 · 𝑀)) = ((2 · 𝑀) · ((2 · 𝑀) − 1)))
185183, 184oveq12d 7364 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
186181, 185eqtrd 2766 . . . . . . . . 9 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
187186oveq2d 7362 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
188176, 187eqtrd 2766 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
189188oveq1d 7361 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))))
190 6re 12212 . . . . . . . . 9 6 ∈ ℝ
19159, 140nnmulcld 12175 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ)
192 nndivre 12163 . . . . . . . . 9 ((6 ∈ ℝ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ) → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
193190, 191, 192sylancr 587 . . . . . . . 8 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
194193recnd 11137 . . . . . . 7 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℂ)
195 nnm1nn0 12419 . . . . . . . . . . . . . 14 (((2 · 𝑀) − 1) ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
196140, 195syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
197153, 196eqeltrrd 2832 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℕ0)
198197nn0red 12440 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℝ)
199140nnred 12137 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℝ)
20061nnred 12137 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ)
201199ltm1d 12051 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) < ((2 · 𝑀) − 1))
202153, 201eqbrtrrd 5115 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) < ((2 · 𝑀) − 1))
203198, 199, 202ltled 11258 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ ((2 · 𝑀) − 1))
204198, 199, 200, 203, 133letrd 11267 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ 𝑁)
205 nn0uz 12771 . . . . . . . . . . . 12 0 = (ℤ‘0)
206197, 205eleqtrdi 2841 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (ℤ‘0))
207 elfz5 13413 . . . . . . . . . . 11 (((2 · (𝑀 − 1)) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
208206, 100, 207syl2anc 584 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
209204, 208mpbird 257 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (0...𝑁))
210 bccl2 14227 . . . . . . . . 9 ((2 · (𝑀 − 1)) ∈ (0...𝑁) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
211209, 210syl 17 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
212211nnne0d 12172 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ≠ 0)
213194, 71, 212divcan3d 11899 . . . . . 6 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
214189, 213eqtrd 2766 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
215214oveq2d 7362 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
216107, 71, 112, 212recdivd 11911 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
217191nncnd 12138 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ)
218191nnne0d 12172 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)
219 6cn 12213 . . . . . 6 6 ∈ ℂ
220 6nn 12211 . . . . . . 7 6 ∈ ℕ
221220nnne0i 12162 . . . . . 6 6 ≠ 0
222 recdiv 11824 . . . . . 6 (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
223219, 221, 222mpanl12 702 . . . . 5 ((((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
224217, 218, 223syl2anc 584 . . . 4 (𝑀 ∈ ℕ → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
225215, 216, 2243eqtr3d 2774 . . 3 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
226114, 118, 2253eqtrd 2770 . 2 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
22719, 33, 2263eqtr3d 2774 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  {csn 4576   class class class wbr 5091  cmpt 5172  ccnv 5615  dom cdm 5616  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341  -cneg 11342   / cdiv 11771  cn 12122  2c2 12177  3c3 12178  6c6 12181  0cn0 12378  cz 12465  cuz 12729  ...cfz 13404  cexp 13965  Ccbc 14206  chash 14234  Σcsu 15590  tanctan 15969  πcpi 15970  Polycply 26114  coeffccoe 26116  degcdgr 26117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-tan 15975  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-0p 25596  df-limc 25792  df-dv 25793  df-ply 26118  df-idp 26119  df-coe 26120  df-dgr 26121  df-quot 26224
This theorem is referenced by:  basellem8  27023
  Copyright terms: Public domain W3C validator