Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rddif | Structured version Visualization version GIF version |
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.) |
Ref | Expression |
---|---|
rddif | ⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfcn 12216 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℂ | |
2 | 1 | 2timesi 12139 | . . . . . . 7 ⊢ (2 · (1 / 2)) = ((1 / 2) + (1 / 2)) |
3 | 2cn 12076 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
4 | 2ne0 12105 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
5 | 3, 4 | recidi 11734 | . . . . . . 7 ⊢ (2 · (1 / 2)) = 1 |
6 | 2, 5 | eqtr3i 2763 | . . . . . 6 ⊢ ((1 / 2) + (1 / 2)) = 1 |
7 | 6 | oveq2i 7306 | . . . . 5 ⊢ ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = ((𝐴 − (1 / 2)) + 1) |
8 | recn 10989 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ) |
10 | 8, 9, 9 | nppcan3d 11387 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = (𝐴 + (1 / 2))) |
11 | 7, 10 | eqtr3id 2787 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) = (𝐴 + (1 / 2))) |
12 | halfre 12215 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
13 | readdcl 10982 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ) | |
14 | 12, 13 | mpan2 687 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ) |
15 | fllep1 13549 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)) |
17 | 11, 16 | eqbrtrd 5099 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)) |
18 | resubcl 11313 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 − (1 / 2)) ∈ ℝ) | |
19 | 12, 18 | mpan2 687 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ∈ ℝ) |
20 | reflcl 13544 | . . . . 5 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) | |
21 | 14, 20 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ) |
22 | 1red 11004 | . . . 4 ⊢ (𝐴 ∈ ℝ → 1 ∈ ℝ) | |
23 | 19, 21, 22 | leadd1d 11597 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ↔ ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))) |
24 | 17, 23 | mpbird 256 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2)))) |
25 | flle 13547 | . . 3 ⊢ ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))) | |
26 | 14, 25 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))) |
27 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
28 | 12 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ) |
29 | absdifle 15058 | . . 3 ⊢ (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))))) | |
30 | 21, 27, 28, 29 | syl3anc 1369 | . 2 ⊢ (𝐴 ∈ ℝ → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2))))) |
31 | 24, 26, 30 | mpbir2and 709 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 ℂcc 10897 ℝcr 10898 1c1 10900 + caddc 10902 · cmul 10904 ≤ cle 11038 − cmin 11233 / cdiv 11660 2c2 12056 ⌊cfl 13538 abscabs 14973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-sup 9229 df-inf 9230 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-fl 13540 df-seq 13750 df-exp 13811 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 |
This theorem is referenced by: absrdbnd 15081 rddif2 34685 dnibndlem11 34696 knoppcnlem4 34704 cntotbnd 35982 |
Copyright terms: Public domain | W3C validator |