MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rddif Structured version   Visualization version   GIF version

Theorem rddif 15266
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
rddif (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))

Proof of Theorem rddif
StepHypRef Expression
1 halfcn 12356 . . . . . . . 8 (1 / 2) ∈ ℂ
212timesi 12279 . . . . . . 7 (2 · (1 / 2)) = ((1 / 2) + (1 / 2))
3 2cn 12221 . . . . . . . 8 2 ∈ ℂ
4 2ne0 12250 . . . . . . . 8 2 ≠ 0
53, 4recidi 11873 . . . . . . 7 (2 · (1 / 2)) = 1
62, 5eqtr3i 2754 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
76oveq2i 7364 . . . . 5 ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = ((𝐴 − (1 / 2)) + 1)
8 recn 11118 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ)
108, 9, 9nppcan3d 11520 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = (𝐴 + (1 / 2)))
117, 10eqtr3id 2778 . . . 4 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) = (𝐴 + (1 / 2)))
12 halfre 12355 . . . . . 6 (1 / 2) ∈ ℝ
13 readdcl 11111 . . . . . 6 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
1412, 13mpan2 691 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
15 fllep1 13723 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1614, 15syl 17 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1711, 16eqbrtrd 5117 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
18 resubcl 11446 . . . . 5 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 − (1 / 2)) ∈ ℝ)
1912, 18mpan2 691 . . . 4 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ∈ ℝ)
20 reflcl 13718 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2114, 20syl 17 . . . 4 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
22 1red 11135 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
2319, 21, 22leadd1d 11732 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ↔ ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)))
2417, 23mpbird 257 . 2 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))))
25 flle 13721 . . 3 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
2614, 25syl 17 . 2 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
27 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2812a1i 11 . . 3 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
29 absdifle 15244 . . 3 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3021, 27, 28, 29syl3anc 1373 . 2 (𝐴 ∈ ℝ → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3124, 26, 30mpbir2and 713 1 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cmin 11365   / cdiv 11795  2c2 12201  cfl 13712  abscabs 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161
This theorem is referenced by:  absrdbnd  15267  rddif2  36450  dnibndlem11  36461  knoppcnlem4  36469  cntotbnd  37775
  Copyright terms: Public domain W3C validator