MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rddif Structured version   Visualization version   GIF version

Theorem rddif 15250
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
rddif (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))

Proof of Theorem rddif
StepHypRef Expression
1 halfcn 12342 . . . . . . . 8 (1 / 2) ∈ ℂ
212timesi 12265 . . . . . . 7 (2 · (1 / 2)) = ((1 / 2) + (1 / 2))
3 2cn 12207 . . . . . . . 8 2 ∈ ℂ
4 2ne0 12236 . . . . . . . 8 2 ≠ 0
53, 4recidi 11859 . . . . . . 7 (2 · (1 / 2)) = 1
62, 5eqtr3i 2758 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
76oveq2i 7363 . . . . 5 ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = ((𝐴 − (1 / 2)) + 1)
8 recn 11103 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ)
108, 9, 9nppcan3d 11506 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = (𝐴 + (1 / 2)))
117, 10eqtr3id 2782 . . . 4 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) = (𝐴 + (1 / 2)))
12 halfre 12341 . . . . . 6 (1 / 2) ∈ ℝ
13 readdcl 11096 . . . . . 6 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
1412, 13mpan2 691 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
15 fllep1 13707 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1614, 15syl 17 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1711, 16eqbrtrd 5115 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
18 resubcl 11432 . . . . 5 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 − (1 / 2)) ∈ ℝ)
1912, 18mpan2 691 . . . 4 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ∈ ℝ)
20 reflcl 13702 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2114, 20syl 17 . . . 4 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
22 1red 11120 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
2319, 21, 22leadd1d 11718 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ↔ ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)))
2417, 23mpbird 257 . 2 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))))
25 flle 13705 . . 3 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
2614, 25syl 17 . 2 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
27 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2812a1i 11 . . 3 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
29 absdifle 15228 . . 3 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3021, 27, 28, 29syl3anc 1373 . 2 (𝐴 ∈ ℝ → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3124, 26, 30mpbir2and 713 1 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  1c1 11014   + caddc 11016   · cmul 11018  cle 11154  cmin 11351   / cdiv 11781  2c2 12187  cfl 13696  abscabs 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fl 13698  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145
This theorem is referenced by:  absrdbnd  15251  rddif2  36542  dnibndlem11  36553  knoppcnlem4  36561  cntotbnd  37856
  Copyright terms: Public domain W3C validator