MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rddif Structured version   Visualization version   GIF version

Theorem rddif 15340
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
rddif (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))

Proof of Theorem rddif
StepHypRef Expression
1 halfcn 12473 . . . . . . . 8 (1 / 2) ∈ ℂ
212timesi 12396 . . . . . . 7 (2 · (1 / 2)) = ((1 / 2) + (1 / 2))
3 2cn 12333 . . . . . . . 8 2 ∈ ℂ
4 2ne0 12362 . . . . . . . 8 2 ≠ 0
53, 4recidi 11990 . . . . . . 7 (2 · (1 / 2)) = 1
62, 5eqtr3i 2756 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
76oveq2i 7427 . . . . 5 ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = ((𝐴 − (1 / 2)) + 1)
8 recn 11239 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
91a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℂ)
108, 9, 9nppcan3d 11639 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + ((1 / 2) + (1 / 2))) = (𝐴 + (1 / 2)))
117, 10eqtr3id 2780 . . . 4 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) = (𝐴 + (1 / 2)))
12 halfre 12472 . . . . . 6 (1 / 2) ∈ ℝ
13 readdcl 11232 . . . . . 6 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
1412, 13mpan2 689 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
15 fllep1 13815 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1614, 15syl 17 . . . 4 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
1711, 16eqbrtrd 5167 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1))
18 resubcl 11565 . . . . 5 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 − (1 / 2)) ∈ ℝ)
1912, 18mpan2 689 . . . 4 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ∈ ℝ)
20 reflcl 13810 . . . . 5 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2114, 20syl 17 . . . 4 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
22 1red 11256 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
2319, 21, 22leadd1d 11849 . . 3 (𝐴 ∈ ℝ → ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ↔ ((𝐴 − (1 / 2)) + 1) ≤ ((⌊‘(𝐴 + (1 / 2))) + 1)))
2417, 23mpbird 256 . 2 (𝐴 ∈ ℝ → (𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))))
25 flle 13813 . . 3 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
2614, 25syl 17 . 2 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))
27 id 22 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2812a1i 11 . . 3 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
29 absdifle 15318 . . 3 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3021, 27, 28, 29syl3anc 1368 . 2 (𝐴 ∈ ℝ → ((abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2) ↔ ((𝐴 − (1 / 2)) ≤ (⌊‘(𝐴 + (1 / 2))) ∧ (⌊‘(𝐴 + (1 / 2))) ≤ (𝐴 + (1 / 2)))))
3124, 26, 30mpbir2and 711 1 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099   class class class wbr 5145  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  1c1 11150   + caddc 11152   · cmul 11154  cle 11290  cmin 11485   / cdiv 11912  2c2 12313  cfl 13804  abscabs 15234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fl 13806  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236
This theorem is referenced by:  absrdbnd  15341  rddif2  36193  dnibndlem11  36204  knoppcnlem4  36212  cntotbnd  37510
  Copyright terms: Public domain W3C validator