Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem3 Structured version   Visualization version   GIF version

Theorem 3atlem3 37977
Description: Lemma for 3at 37982. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l ≀ = (leβ€˜πΎ)
3at.j ∨ = (joinβ€˜πΎ)
3at.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
3atlem3 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))

Proof of Theorem 3atlem3
StepHypRef Expression
1 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)))
2 simpl21 1252 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
3 simpl22 1253 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ 𝑃 β‰  π‘ˆ)
4 simpr 486 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ 𝑃 ≀ (𝑇 ∨ π‘ˆ))
53, 4jca 513 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ (𝑃 β‰  π‘ˆ ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)))
6 simpl23 1254 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))
7 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
8 3at.l . . . 4 ≀ = (leβ€˜πΎ)
9 3at.j . . . 4 ∨ = (joinβ€˜πΎ)
10 3at.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
118, 9, 103atlem2 37976 . . 3 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ (𝑃 β‰  π‘ˆ ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
121, 2, 5, 6, 7, 11syl131anc 1384 . 2 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
13 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)))
14 simpl21 1252 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
15 simpr 486 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ))
16 simpl23 1254 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))
17 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
188, 9, 103atlem1 37975 . . 3 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
1913, 14, 15, 16, 17, 18syl131anc 1384 . 2 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ∧ Β¬ 𝑃 ≀ (𝑇 ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
2012, 19pm2.61dan 812 1 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  lecple 17147  joincjn 18207  Atomscatm 37754  HLchlt 37841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842
This theorem is referenced by:  3atlem4  37978  3atlem5  37979
  Copyright terms: Public domain W3C validator