Proof of Theorem 3atlem3
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴))) |
| 2 | | simpl21 1252 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 3 | | simpl22 1253 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → 𝑃 ≠ 𝑈) |
| 4 | | simpr 484 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → 𝑃 ≤ (𝑇 ∨ 𝑈)) |
| 5 | 3, 4 | jca 511 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → (𝑃 ≠ 𝑈 ∧ 𝑃 ≤ (𝑇 ∨ 𝑈))) |
| 6 | | simpl23 1254 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) |
| 7 | | simpl3 1194 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 8 | | 3at.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 9 | | 3at.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 10 | | 3at.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 11 | 8, 9, 10 | 3atlem2 39486 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑃 ≠ 𝑈 ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 12 | 1, 2, 5, 6, 7, 11 | syl131anc 1385 |
. 2
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 13 | | simpl1 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈)) → (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴))) |
| 14 | | simpl21 1252 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 15 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ¬ 𝑃 ≤ (𝑇 ∨ 𝑈)) |
| 16 | | simpl23 1254 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) |
| 17 | | simpl3 1194 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 18 | 8, 9, 10 | 3atlem1 39485 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 19 | 13, 14, 15, 16, 17, 18 | syl131anc 1385 |
. 2
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) ∧ ¬ 𝑃 ≤ (𝑇 ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |
| 20 | 12, 19 | pm2.61dan 813 |
1
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑈 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑈)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≤ ((𝑆 ∨ 𝑇) ∨ 𝑈)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) |