| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecindp | Structured version Visualization version GIF version | ||
| Description: Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.) |
| Ref | Expression |
|---|---|
| lvecindp.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecindp.p | ⊢ + = (+g‘𝑊) |
| lvecindp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecindp.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecindp.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecindp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lvecindp.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecindp.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lvecindp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lvecindp.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| lvecindp.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| lvecindp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| lvecindp.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecindp.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lvecindp.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍)) |
| Ref | Expression |
|---|---|
| lvecindp | ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝑌 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecindp.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 4 | lvecindp.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 5 | lveclmod 21028 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 7 | lvecindp.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 8 | lvecindp.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 10 | 8, 9 | lspsnsubg 20901 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 11 | 6, 7, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 12 | lvecindp.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 13 | 12 | lsssssubg 20879 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 14 | 6, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 15 | lvecindp.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 16 | 14, 15 | sseldd 3938 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 17 | lvecindp.n | . . . . 5 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 18 | 8, 2, 9, 12, 4, 15, 7, 17 | lspdisj 21050 | . . . 4 ⊢ (𝜑 → (((LSpan‘𝑊)‘{𝑋}) ∩ 𝑈) = {(0g‘𝑊)}) |
| 19 | lmodabl 20830 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 20 | 6, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 21 | 3, 20, 11, 16 | ablcntzd 19754 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((Cntz‘𝑊)‘𝑈)) |
| 22 | lvecindp.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 23 | lvecindp.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 24 | lvecindp.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 25 | lvecindp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 26 | 8, 22, 23, 24, 9, 6, 25, 7 | ellspsni 20922 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋})) |
| 27 | lvecindp.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 28 | 8, 22, 23, 24, 9, 6, 27, 7 | ellspsni 20922 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋})) |
| 29 | lvecindp.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 30 | lvecindp.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 31 | lvecindp.e | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍)) | |
| 32 | 1, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31 | subgdisj1 19588 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑋)) |
| 33 | 2, 12, 6, 15, 17 | lssvneln0 20873 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ (0g‘𝑊)) |
| 34 | 8, 22, 23, 24, 2, 4, 25, 27, 7, 33 | lvecvscan2 21037 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
| 35 | 32, 34 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 36 | 1, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31 | subgdisj2 19589 | . 2 ⊢ (𝜑 → 𝑌 = 𝑍) |
| 37 | 35, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝑌 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 SubGrpcsubg 19017 Cntzccntz 19212 Abelcabl 19678 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 LVecclvec 21024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 |
| This theorem is referenced by: baerlem3lem1 41686 baerlem5alem1 41687 baerlem5blem1 41688 |
| Copyright terms: Public domain | W3C validator |