![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecindp | Structured version Visualization version GIF version |
Description: Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.) |
Ref | Expression |
---|---|
lvecindp.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecindp.p | ⊢ + = (+g‘𝑊) |
lvecindp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecindp.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecindp.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecindp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lvecindp.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecindp.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lvecindp.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecindp.n | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
lvecindp.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
lvecindp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
lvecindp.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecindp.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lvecindp.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍)) |
Ref | Expression |
---|---|
lvecindp | ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝑌 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecindp.p | . . . 4 ⊢ + = (+g‘𝑊) | |
2 | eqid 2735 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
3 | eqid 2735 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
4 | lvecindp.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 21123 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | lvecindp.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | lvecindp.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2735 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
10 | 8, 9 | lspsnsubg 20996 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊)) |
11 | 6, 7, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊)) |
12 | lvecindp.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
13 | 12 | lsssssubg 20974 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
14 | 6, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
15 | lvecindp.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
16 | 14, 15 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
17 | lvecindp.n | . . . . 5 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
18 | 8, 2, 9, 12, 4, 15, 7, 17 | lspdisj 21145 | . . . 4 ⊢ (𝜑 → (((LSpan‘𝑊)‘{𝑋}) ∩ 𝑈) = {(0g‘𝑊)}) |
19 | lmodabl 20924 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
20 | 6, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
21 | 3, 20, 11, 16 | ablcntzd 19890 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((Cntz‘𝑊)‘𝑈)) |
22 | lvecindp.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
23 | lvecindp.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
24 | lvecindp.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
25 | lvecindp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
26 | 8, 22, 23, 24, 9, 6, 25, 7 | ellspsni 21017 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋})) |
27 | lvecindp.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
28 | 8, 22, 23, 24, 9, 6, 27, 7 | ellspsni 21017 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋})) |
29 | lvecindp.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
30 | lvecindp.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
31 | lvecindp.e | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍)) | |
32 | 1, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31 | subgdisj1 19724 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑋)) |
33 | 2, 12, 6, 15, 17 | lssvneln0 20968 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ (0g‘𝑊)) |
34 | 8, 22, 23, 24, 2, 4, 25, 27, 7, 33 | lvecvscan2 21132 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) |
35 | 32, 34 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
36 | 1, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31 | subgdisj2 19725 | . 2 ⊢ (𝜑 → 𝑌 = 𝑍) |
37 | 35, 36 | jca 511 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝑌 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 {csn 4631 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 SubGrpcsubg 19151 Cntzccntz 19346 Abelcabl 19814 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 LVecclvec 21119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 |
This theorem is referenced by: baerlem3lem1 41690 baerlem5alem1 41691 baerlem5blem1 41692 |
Copyright terms: Public domain | W3C validator |