MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp Structured version   Visualization version   GIF version

Theorem lvecindp 19846
Description: Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.)
Hypotheses
Ref Expression
lvecindp.v 𝑉 = (Base‘𝑊)
lvecindp.p + = (+g𝑊)
lvecindp.f 𝐹 = (Scalar‘𝑊)
lvecindp.k 𝐾 = (Base‘𝐹)
lvecindp.t · = ( ·𝑠𝑊)
lvecindp.s 𝑆 = (LSubSp‘𝑊)
lvecindp.w (𝜑𝑊 ∈ LVec)
lvecindp.u (𝜑𝑈𝑆)
lvecindp.x (𝜑𝑋𝑉)
lvecindp.n (𝜑 → ¬ 𝑋𝑈)
lvecindp.y (𝜑𝑌𝑈)
lvecindp.z (𝜑𝑍𝑈)
lvecindp.a (𝜑𝐴𝐾)
lvecindp.b (𝜑𝐵𝐾)
lvecindp.e (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
Assertion
Ref Expression
lvecindp (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))

Proof of Theorem lvecindp
StepHypRef Expression
1 lvecindp.p . . . 4 + = (+g𝑊)
2 eqid 2826 . . . 4 (0g𝑊) = (0g𝑊)
3 eqid 2826 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
4 lvecindp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
5 lveclmod 19814 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
7 lvecindp.x . . . . 5 (𝜑𝑋𝑉)
8 lvecindp.v . . . . . 6 𝑉 = (Base‘𝑊)
9 eqid 2826 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
108, 9lspsnsubg 19688 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
116, 7, 10syl2anc 584 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
12 lvecindp.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
1312lsssssubg 19666 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
146, 13syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
15 lvecindp.u . . . . 5 (𝜑𝑈𝑆)
1614, 15sseldd 3972 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
17 lvecindp.n . . . . 5 (𝜑 → ¬ 𝑋𝑈)
188, 2, 9, 12, 4, 15, 7, 17lspdisj 19833 . . . 4 (𝜑 → (((LSpan‘𝑊)‘{𝑋}) ∩ 𝑈) = {(0g𝑊)})
19 lmodabl 19617 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
206, 19syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
213, 20, 11, 16ablcntzd 18913 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((Cntz‘𝑊)‘𝑈))
22 lvecindp.t . . . . 5 · = ( ·𝑠𝑊)
23 lvecindp.f . . . . 5 𝐹 = (Scalar‘𝑊)
24 lvecindp.k . . . . 5 𝐾 = (Base‘𝐹)
25 lvecindp.a . . . . 5 (𝜑𝐴𝐾)
268, 22, 23, 24, 9, 6, 25, 7lspsneli 19709 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
27 lvecindp.b . . . . 5 (𝜑𝐵𝐾)
288, 22, 23, 24, 9, 6, 27, 7lspsneli 19709 . . . 4 (𝜑 → (𝐵 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
29 lvecindp.y . . . 4 (𝜑𝑌𝑈)
30 lvecindp.z . . . 4 (𝜑𝑍𝑈)
31 lvecindp.e . . . 4 (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
321, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj1 18753 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑋))
332, 12, 6, 15, 17lssvneln0 19659 . . . 4 (𝜑𝑋 ≠ (0g𝑊))
348, 22, 23, 24, 2, 4, 25, 27, 7, 33lvecvscan2 19820 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
3532, 34mpbid 233 . 2 (𝜑𝐴 = 𝐵)
361, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj2 18754 . 2 (𝜑𝑌 = 𝑍)
3735, 36jca 512 1 (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wcel 2107  wss 3940  {csn 4564  cfv 6354  (class class class)co 7150  Basecbs 16478  +gcplusg 16560  Scalarcsca 16563   ·𝑠 cvsca 16564  0gc0g 16708  SubGrpcsubg 18218  Cntzccntz 18390  Abelcabl 18843  LModclmod 19570  LSubSpclss 19639  LSpanclspn 19679  LVecclvec 19810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-minusg 18052  df-sbg 18053  df-subg 18221  df-cntz 18392  df-cmn 18844  df-abl 18845  df-mgp 19176  df-ur 19188  df-ring 19235  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-invr 19358  df-drng 19440  df-lmod 19572  df-lss 19640  df-lsp 19680  df-lvec 19811
This theorem is referenced by:  baerlem3lem1  38729  baerlem5alem1  38730  baerlem5blem1  38731
  Copyright terms: Public domain W3C validator