MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp Structured version   Visualization version   GIF version

Theorem lvecindp 21077
Description: Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.)
Hypotheses
Ref Expression
lvecindp.v 𝑉 = (Base‘𝑊)
lvecindp.p + = (+g𝑊)
lvecindp.f 𝐹 = (Scalar‘𝑊)
lvecindp.k 𝐾 = (Base‘𝐹)
lvecindp.t · = ( ·𝑠𝑊)
lvecindp.s 𝑆 = (LSubSp‘𝑊)
lvecindp.w (𝜑𝑊 ∈ LVec)
lvecindp.u (𝜑𝑈𝑆)
lvecindp.x (𝜑𝑋𝑉)
lvecindp.n (𝜑 → ¬ 𝑋𝑈)
lvecindp.y (𝜑𝑌𝑈)
lvecindp.z (𝜑𝑍𝑈)
lvecindp.a (𝜑𝐴𝐾)
lvecindp.b (𝜑𝐵𝐾)
lvecindp.e (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
Assertion
Ref Expression
lvecindp (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))

Proof of Theorem lvecindp
StepHypRef Expression
1 lvecindp.p . . . 4 + = (+g𝑊)
2 eqid 2733 . . . 4 (0g𝑊) = (0g𝑊)
3 eqid 2733 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
4 lvecindp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
5 lveclmod 21042 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
7 lvecindp.x . . . . 5 (𝜑𝑋𝑉)
8 lvecindp.v . . . . . 6 𝑉 = (Base‘𝑊)
9 eqid 2733 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
108, 9lspsnsubg 20915 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
116, 7, 10syl2anc 584 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
12 lvecindp.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
1312lsssssubg 20893 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
146, 13syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
15 lvecindp.u . . . . 5 (𝜑𝑈𝑆)
1614, 15sseldd 3931 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
17 lvecindp.n . . . . 5 (𝜑 → ¬ 𝑋𝑈)
188, 2, 9, 12, 4, 15, 7, 17lspdisj 21064 . . . 4 (𝜑 → (((LSpan‘𝑊)‘{𝑋}) ∩ 𝑈) = {(0g𝑊)})
19 lmodabl 20844 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
206, 19syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
213, 20, 11, 16ablcntzd 19771 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((Cntz‘𝑊)‘𝑈))
22 lvecindp.t . . . . 5 · = ( ·𝑠𝑊)
23 lvecindp.f . . . . 5 𝐹 = (Scalar‘𝑊)
24 lvecindp.k . . . . 5 𝐾 = (Base‘𝐹)
25 lvecindp.a . . . . 5 (𝜑𝐴𝐾)
268, 22, 23, 24, 9, 6, 25, 7ellspsni 20936 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
27 lvecindp.b . . . . 5 (𝜑𝐵𝐾)
288, 22, 23, 24, 9, 6, 27, 7ellspsni 20936 . . . 4 (𝜑 → (𝐵 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
29 lvecindp.y . . . 4 (𝜑𝑌𝑈)
30 lvecindp.z . . . 4 (𝜑𝑍𝑈)
31 lvecindp.e . . . 4 (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
321, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj1 19605 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑋))
332, 12, 6, 15, 17lssvneln0 20887 . . . 4 (𝜑𝑋 ≠ (0g𝑊))
348, 22, 23, 24, 2, 4, 25, 27, 7, 33lvecvscan2 21051 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
3532, 34mpbid 232 . 2 (𝜑𝐴 = 𝐵)
361, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj2 19606 . 2 (𝜑𝑌 = 𝑍)
3735, 36jca 511 1 (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898  {csn 4575  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  SubGrpcsubg 19035  Cntzccntz 19229  Abelcabl 19695  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LVecclvec 21038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039
This theorem is referenced by:  baerlem3lem1  41826  baerlem5alem1  41827  baerlem5blem1  41828
  Copyright terms: Public domain W3C validator