MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp Structured version   Visualization version   GIF version

Theorem lvecindp 19353
Description: Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.)
Hypotheses
Ref Expression
lvecindp.v 𝑉 = (Base‘𝑊)
lvecindp.p + = (+g𝑊)
lvecindp.f 𝐹 = (Scalar‘𝑊)
lvecindp.k 𝐾 = (Base‘𝐹)
lvecindp.t · = ( ·𝑠𝑊)
lvecindp.s 𝑆 = (LSubSp‘𝑊)
lvecindp.w (𝜑𝑊 ∈ LVec)
lvecindp.u (𝜑𝑈𝑆)
lvecindp.x (𝜑𝑋𝑉)
lvecindp.n (𝜑 → ¬ 𝑋𝑈)
lvecindp.y (𝜑𝑌𝑈)
lvecindp.z (𝜑𝑍𝑈)
lvecindp.a (𝜑𝐴𝐾)
lvecindp.b (𝜑𝐵𝐾)
lvecindp.e (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
Assertion
Ref Expression
lvecindp (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))

Proof of Theorem lvecindp
StepHypRef Expression
1 lvecindp.p . . . 4 + = (+g𝑊)
2 eqid 2771 . . . 4 (0g𝑊) = (0g𝑊)
3 eqid 2771 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
4 lvecindp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
5 lveclmod 19320 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
7 lvecindp.x . . . . 5 (𝜑𝑋𝑉)
8 lvecindp.v . . . . . 6 𝑉 = (Base‘𝑊)
9 eqid 2771 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
108, 9lspsnsubg 19194 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
116, 7, 10syl2anc 567 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ∈ (SubGrp‘𝑊))
12 lvecindp.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
1312lsssssubg 19172 . . . . . 6 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
146, 13syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
15 lvecindp.u . . . . 5 (𝜑𝑈𝑆)
1614, 15sseldd 3754 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝑊))
17 lvecindp.n . . . . 5 (𝜑 → ¬ 𝑋𝑈)
188, 2, 9, 12, 4, 15, 7, 17lspdisj 19339 . . . 4 (𝜑 → (((LSpan‘𝑊)‘{𝑋}) ∩ 𝑈) = {(0g𝑊)})
19 lmodabl 19121 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
206, 19syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
213, 20, 11, 16ablcntzd 18468 . . . 4 (𝜑 → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((Cntz‘𝑊)‘𝑈))
22 lvecindp.t . . . . 5 · = ( ·𝑠𝑊)
23 lvecindp.f . . . . 5 𝐹 = (Scalar‘𝑊)
24 lvecindp.k . . . . 5 𝐾 = (Base‘𝐹)
25 lvecindp.a . . . . 5 (𝜑𝐴𝐾)
268, 22, 23, 24, 9, 6, 25, 7lspsneli 19215 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
27 lvecindp.b . . . . 5 (𝜑𝐵𝐾)
288, 22, 23, 24, 9, 6, 27, 7lspsneli 19215 . . . 4 (𝜑 → (𝐵 · 𝑋) ∈ ((LSpan‘𝑊)‘{𝑋}))
29 lvecindp.y . . . 4 (𝜑𝑌𝑈)
30 lvecindp.z . . . 4 (𝜑𝑍𝑈)
31 lvecindp.e . . . 4 (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍))
321, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj1 18312 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑋))
332, 12, 6, 15, 17lssvneln0 19163 . . . 4 (𝜑𝑋 ≠ (0g𝑊))
348, 22, 23, 24, 2, 4, 25, 27, 7, 33lvecvscan2 19326 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵))
3532, 34mpbid 222 . 2 (𝜑𝐴 = 𝐵)
361, 2, 3, 11, 16, 18, 21, 26, 28, 29, 30, 31subgdisj2 18313 . 2 (𝜑𝑌 = 𝑍)
3735, 36jca 497 1 (𝜑 → (𝐴 = 𝐵𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wss 3724  {csn 4317  cfv 6032  (class class class)co 6794  Basecbs 16065  +gcplusg 16150  Scalarcsca 16153   ·𝑠 cvsca 16154  0gc0g 16309  SubGrpcsubg 17797  Cntzccntz 17956  Abelcabl 18402  LModclmod 19074  LSubSpclss 19143  LSpanclspn 19185  LVecclvec 19316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-tpos 7505  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-nn 11224  df-2 11282  df-3 11283  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-ress 16073  df-plusg 16163  df-mulr 16164  df-0g 16311  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-grp 17634  df-minusg 17635  df-sbg 17636  df-subg 17800  df-cntz 17958  df-cmn 18403  df-abl 18404  df-mgp 18699  df-ur 18711  df-ring 18758  df-oppr 18832  df-dvdsr 18850  df-unit 18851  df-invr 18881  df-drng 18960  df-lmod 19076  df-lss 19144  df-lsp 19186  df-lvec 19317
This theorem is referenced by:  baerlem3lem1  37518  baerlem5alem1  37519  baerlem5blem1  37520
  Copyright terms: Public domain W3C validator