MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp2 Structured version   Visualization version   GIF version

Theorem ablfacrp2 20050
Description: The factors 𝐾, 𝐿 of ablfacrp 20049 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrp2 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp2
StepHypRef Expression
1 ablfacrp.2 . . . . . . 7 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
2 ablfacrp.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
32nnnn0d 12562 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
4 ablfacrp.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12562 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
63, 5nn0mulcld 12567 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
71, 6eqeltrd 2834 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ0)
8 ablfacrp.b . . . . . . . 8 𝐵 = (Base‘𝐺)
98fvexi 6890 . . . . . . 7 𝐵 ∈ V
10 hashclb 14376 . . . . . . 7 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
119, 10ax-mp 5 . . . . . 6 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
127, 11sylibr 234 . . . . 5 (𝜑𝐵 ∈ Fin)
13 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
1413ssrab3 4057 . . . . 5 𝐾𝐵
15 ssfi 9187 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
1612, 14, 15sylancl 586 . . . 4 (𝜑𝐾 ∈ Fin)
17 hashcl 14374 . . . 4 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
1816, 17syl 17 . . 3 (𝜑 → (♯‘𝐾) ∈ ℕ0)
19 ablfacrp.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
202nnzd 12615 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
21 ablfacrp.o . . . . . . . . 9 𝑂 = (od‘𝐺)
2221, 8oddvdssubg 19836 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2319, 20, 22syl2anc 584 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2413, 23eqeltrid 2838 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
258lagsubg 19178 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝐵))
2624, 12, 25syl2anc 584 . . . . 5 (𝜑 → (♯‘𝐾) ∥ (♯‘𝐵))
272nncnd 12256 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
284nncnd 12256 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2927, 28mulcomd 11256 . . . . . 6 (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀))
301, 29eqtrd 2770 . . . . 5 (𝜑 → (♯‘𝐵) = (𝑁 · 𝑀))
3126, 30breqtrd 5145 . . . 4 (𝜑 → (♯‘𝐾) ∥ (𝑁 · 𝑀))
32 ablfacrp.l . . . . 5 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
33 ablfacrp.1 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
348, 21, 13, 32, 19, 2, 4, 33, 1ablfacrplem 20048 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
3518nn0zd 12614 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℤ)
364nnzd 12615 . . . . 5 (𝜑𝑁 ∈ ℤ)
37 coprmdvds 16672 . . . . 5 (((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3835, 36, 20, 37syl3anc 1373 . . . 4 (𝜑 → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3931, 34, 38mp2and 699 . . 3 (𝜑 → (♯‘𝐾) ∥ 𝑀)
4021, 8oddvdssubg 19836 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4119, 36, 40syl2anc 584 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4232, 41eqeltrid 2838 . . . . . . . . 9 (𝜑𝐿 ∈ (SubGrp‘𝐺))
438lagsubg 19178 . . . . . . . . 9 ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐿) ∥ (♯‘𝐵))
4442, 12, 43syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∥ (♯‘𝐵))
4544, 1breqtrd 5145 . . . . . . 7 (𝜑 → (♯‘𝐿) ∥ (𝑀 · 𝑁))
4620, 36gcdcomd 16533 . . . . . . . . 9 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
4746, 33eqtr3d 2772 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑀) = 1)
488, 21, 32, 13, 19, 4, 2, 47, 30ablfacrplem 20048 . . . . . . 7 (𝜑 → ((♯‘𝐿) gcd 𝑀) = 1)
4932ssrab3 4057 . . . . . . . . . . 11 𝐿𝐵
50 ssfi 9187 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐿𝐵) → 𝐿 ∈ Fin)
5112, 49, 50sylancl 586 . . . . . . . . . 10 (𝜑𝐿 ∈ Fin)
52 hashcl 14374 . . . . . . . . . 10 (𝐿 ∈ Fin → (♯‘𝐿) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐿) ∈ ℕ0)
5453nn0zd 12614 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∈ ℤ)
55 coprmdvds 16672 . . . . . . . 8 (((♯‘𝐿) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5654, 20, 36, 55syl3anc 1373 . . . . . . 7 (𝜑 → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5745, 48, 56mp2and 699 . . . . . 6 (𝜑 → (♯‘𝐿) ∥ 𝑁)
58 dvdscmul 16302 . . . . . . 7 (((♯‘𝐿) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
5954, 36, 20, 58syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
6057, 59mpd 15 . . . . 5 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))
61 eqid 2735 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
62 eqid 2735 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
638, 21, 13, 32, 19, 2, 4, 33, 1, 61, 62ablfacrp 20049 . . . . . . . . 9 (𝜑 → ((𝐾𝐿) = {(0g𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵))
6463simprd 495 . . . . . . . 8 (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵)
6564fveq2d 6880 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = (♯‘𝐵))
66 eqid 2735 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
6763simpld 494 . . . . . . . 8 (𝜑 → (𝐾𝐿) = {(0g𝐺)})
6866, 19, 24, 42ablcntzd 19838 . . . . . . . 8 (𝜑𝐾 ⊆ ((Cntz‘𝐺)‘𝐿))
6962, 61, 66, 24, 42, 67, 68, 16, 51lsmhash 19686 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = ((♯‘𝐾) · (♯‘𝐿)))
7065, 69eqtr3d 2772 . . . . . 6 (𝜑 → (♯‘𝐵) = ((♯‘𝐾) · (♯‘𝐿)))
7170, 1eqtr3d 2772 . . . . 5 (𝜑 → ((♯‘𝐾) · (♯‘𝐿)) = (𝑀 · 𝑁))
7260, 71breqtrrd 5147 . . . 4 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)))
7361subg0cl 19117 . . . . . . . 8 (𝐿 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐿)
74 ne0i 4316 . . . . . . . 8 ((0g𝐺) ∈ 𝐿𝐿 ≠ ∅)
7542, 73, 743syl 18 . . . . . . 7 (𝜑𝐿 ≠ ∅)
76 hashnncl 14384 . . . . . . . 8 (𝐿 ∈ Fin → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7751, 76syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7875, 77mpbird 257 . . . . . 6 (𝜑 → (♯‘𝐿) ∈ ℕ)
7978nnne0d 12290 . . . . 5 (𝜑 → (♯‘𝐿) ≠ 0)
80 dvdsmulcr 16305 . . . . 5 ((𝑀 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ ((♯‘𝐿) ∈ ℤ ∧ (♯‘𝐿) ≠ 0)) → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8120, 35, 54, 79, 80syl112anc 1376 . . . 4 (𝜑 → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8272, 81mpbid 232 . . 3 (𝜑𝑀 ∥ (♯‘𝐾))
83 dvdseq 16333 . . 3 ((((♯‘𝐾) ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((♯‘𝐾) ∥ 𝑀𝑀 ∥ (♯‘𝐾))) → (♯‘𝐾) = 𝑀)
8418, 3, 39, 82, 83syl22anc 838 . 2 (𝜑 → (♯‘𝐾) = 𝑀)
85 dvdsmulc 16303 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8635, 20, 36, 85syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8739, 86mpd 15 . . . . 5 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))
8887, 71breqtrrd 5147 . . . 4 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)))
8984, 2eqeltrd 2834 . . . . . 6 (𝜑 → (♯‘𝐾) ∈ ℕ)
9089nnne0d 12290 . . . . 5 (𝜑 → (♯‘𝐾) ≠ 0)
91 dvdscmulr 16304 . . . . 5 ((𝑁 ∈ ℤ ∧ (♯‘𝐿) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9236, 54, 35, 90, 91syl112anc 1376 . . . 4 (𝜑 → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9388, 92mpbid 232 . . 3 (𝜑𝑁 ∥ (♯‘𝐿))
94 dvdseq 16333 . . 3 ((((♯‘𝐿) ∈ ℕ0𝑁 ∈ ℕ0) ∧ ((♯‘𝐿) ∥ 𝑁𝑁 ∥ (♯‘𝐿))) → (♯‘𝐿) = 𝑁)
9553, 5, 57, 93, 94syl22anc 838 . 2 (𝜑 → (♯‘𝐿) = 𝑁)
9684, 95jca 511 1 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459  cin 3925  wss 3926  c0 4308  {csn 4601   class class class wbr 5119  cfv 6531  (class class class)co 7405  Fincfn 8959  0cc0 11129  1c1 11130   · cmul 11134  cn 12240  0cn0 12501  cz 12588  chash 14348  cdvds 16272   gcd cgcd 16513  Basecbs 17228  0gc0g 17453  SubGrpcsubg 19103  Cntzccntz 19298  odcod 19505  LSSumclsm 19615  Abelcabl 19762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-eqg 19108  df-ga 19273  df-cntz 19300  df-od 19509  df-lsm 19617  df-pj1 19618  df-cmn 19763  df-abl 19764
This theorem is referenced by:  ablfac1a  20052
  Copyright terms: Public domain W3C validator