MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp2 Structured version   Visualization version   GIF version

Theorem ablfacrp2 19408
Description: The factors 𝐾, 𝐿 of ablfacrp 19407 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrp2 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp2
StepHypRef Expression
1 ablfacrp.2 . . . . . . 7 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
2 ablfacrp.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
32nnnn0d 12115 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
4 ablfacrp.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12115 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
63, 5nn0mulcld 12120 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
71, 6eqeltrd 2831 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ0)
8 ablfacrp.b . . . . . . . 8 𝐵 = (Base‘𝐺)
98fvexi 6709 . . . . . . 7 𝐵 ∈ V
10 hashclb 13890 . . . . . . 7 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
119, 10ax-mp 5 . . . . . 6 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
127, 11sylibr 237 . . . . 5 (𝜑𝐵 ∈ Fin)
13 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
1413ssrab3 3981 . . . . 5 𝐾𝐵
15 ssfi 8829 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
1612, 14, 15sylancl 589 . . . 4 (𝜑𝐾 ∈ Fin)
17 hashcl 13888 . . . 4 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
1816, 17syl 17 . . 3 (𝜑 → (♯‘𝐾) ∈ ℕ0)
19 ablfacrp.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
202nnzd 12246 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
21 ablfacrp.o . . . . . . . . 9 𝑂 = (od‘𝐺)
2221, 8oddvdssubg 19194 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2319, 20, 22syl2anc 587 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2413, 23eqeltrid 2835 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
258lagsubg 18560 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝐵))
2624, 12, 25syl2anc 587 . . . . 5 (𝜑 → (♯‘𝐾) ∥ (♯‘𝐵))
272nncnd 11811 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
284nncnd 11811 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2927, 28mulcomd 10819 . . . . . 6 (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀))
301, 29eqtrd 2771 . . . . 5 (𝜑 → (♯‘𝐵) = (𝑁 · 𝑀))
3126, 30breqtrd 5065 . . . 4 (𝜑 → (♯‘𝐾) ∥ (𝑁 · 𝑀))
32 ablfacrp.l . . . . 5 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
33 ablfacrp.1 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
348, 21, 13, 32, 19, 2, 4, 33, 1ablfacrplem 19406 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
3518nn0zd 12245 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℤ)
364nnzd 12246 . . . . 5 (𝜑𝑁 ∈ ℤ)
37 coprmdvds 16173 . . . . 5 (((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3835, 36, 20, 37syl3anc 1373 . . . 4 (𝜑 → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3931, 34, 38mp2and 699 . . 3 (𝜑 → (♯‘𝐾) ∥ 𝑀)
4021, 8oddvdssubg 19194 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4119, 36, 40syl2anc 587 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4232, 41eqeltrid 2835 . . . . . . . . 9 (𝜑𝐿 ∈ (SubGrp‘𝐺))
438lagsubg 18560 . . . . . . . . 9 ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐿) ∥ (♯‘𝐵))
4442, 12, 43syl2anc 587 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∥ (♯‘𝐵))
4544, 1breqtrd 5065 . . . . . . 7 (𝜑 → (♯‘𝐿) ∥ (𝑀 · 𝑁))
4620, 36gcdcomd 16036 . . . . . . . . 9 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
4746, 33eqtr3d 2773 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑀) = 1)
488, 21, 32, 13, 19, 4, 2, 47, 30ablfacrplem 19406 . . . . . . 7 (𝜑 → ((♯‘𝐿) gcd 𝑀) = 1)
4932ssrab3 3981 . . . . . . . . . . 11 𝐿𝐵
50 ssfi 8829 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐿𝐵) → 𝐿 ∈ Fin)
5112, 49, 50sylancl 589 . . . . . . . . . 10 (𝜑𝐿 ∈ Fin)
52 hashcl 13888 . . . . . . . . . 10 (𝐿 ∈ Fin → (♯‘𝐿) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐿) ∈ ℕ0)
5453nn0zd 12245 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∈ ℤ)
55 coprmdvds 16173 . . . . . . . 8 (((♯‘𝐿) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5654, 20, 36, 55syl3anc 1373 . . . . . . 7 (𝜑 → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5745, 48, 56mp2and 699 . . . . . 6 (𝜑 → (♯‘𝐿) ∥ 𝑁)
58 dvdscmul 15807 . . . . . . 7 (((♯‘𝐿) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
5954, 36, 20, 58syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
6057, 59mpd 15 . . . . 5 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))
61 eqid 2736 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
62 eqid 2736 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
638, 21, 13, 32, 19, 2, 4, 33, 1, 61, 62ablfacrp 19407 . . . . . . . . 9 (𝜑 → ((𝐾𝐿) = {(0g𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵))
6463simprd 499 . . . . . . . 8 (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵)
6564fveq2d 6699 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = (♯‘𝐵))
66 eqid 2736 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
6763simpld 498 . . . . . . . 8 (𝜑 → (𝐾𝐿) = {(0g𝐺)})
6866, 19, 24, 42ablcntzd 19196 . . . . . . . 8 (𝜑𝐾 ⊆ ((Cntz‘𝐺)‘𝐿))
6962, 61, 66, 24, 42, 67, 68, 16, 51lsmhash 19049 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = ((♯‘𝐾) · (♯‘𝐿)))
7065, 69eqtr3d 2773 . . . . . 6 (𝜑 → (♯‘𝐵) = ((♯‘𝐾) · (♯‘𝐿)))
7170, 1eqtr3d 2773 . . . . 5 (𝜑 → ((♯‘𝐾) · (♯‘𝐿)) = (𝑀 · 𝑁))
7260, 71breqtrrd 5067 . . . 4 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)))
7361subg0cl 18505 . . . . . . . 8 (𝐿 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐿)
74 ne0i 4235 . . . . . . . 8 ((0g𝐺) ∈ 𝐿𝐿 ≠ ∅)
7542, 73, 743syl 18 . . . . . . 7 (𝜑𝐿 ≠ ∅)
76 hashnncl 13898 . . . . . . . 8 (𝐿 ∈ Fin → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7751, 76syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7875, 77mpbird 260 . . . . . 6 (𝜑 → (♯‘𝐿) ∈ ℕ)
7978nnne0d 11845 . . . . 5 (𝜑 → (♯‘𝐿) ≠ 0)
80 dvdsmulcr 15810 . . . . 5 ((𝑀 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ ((♯‘𝐿) ∈ ℤ ∧ (♯‘𝐿) ≠ 0)) → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8120, 35, 54, 79, 80syl112anc 1376 . . . 4 (𝜑 → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8272, 81mpbid 235 . . 3 (𝜑𝑀 ∥ (♯‘𝐾))
83 dvdseq 15838 . . 3 ((((♯‘𝐾) ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((♯‘𝐾) ∥ 𝑀𝑀 ∥ (♯‘𝐾))) → (♯‘𝐾) = 𝑀)
8418, 3, 39, 82, 83syl22anc 839 . 2 (𝜑 → (♯‘𝐾) = 𝑀)
85 dvdsmulc 15808 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8635, 20, 36, 85syl3anc 1373 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8739, 86mpd 15 . . . . 5 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))
8887, 71breqtrrd 5067 . . . 4 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)))
8984, 2eqeltrd 2831 . . . . . 6 (𝜑 → (♯‘𝐾) ∈ ℕ)
9089nnne0d 11845 . . . . 5 (𝜑 → (♯‘𝐾) ≠ 0)
91 dvdscmulr 15809 . . . . 5 ((𝑁 ∈ ℤ ∧ (♯‘𝐿) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9236, 54, 35, 90, 91syl112anc 1376 . . . 4 (𝜑 → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9388, 92mpbid 235 . . 3 (𝜑𝑁 ∥ (♯‘𝐿))
94 dvdseq 15838 . . 3 ((((♯‘𝐿) ∈ ℕ0𝑁 ∈ ℕ0) ∧ ((♯‘𝐿) ∥ 𝑁𝑁 ∥ (♯‘𝐿))) → (♯‘𝐿) = 𝑁)
9553, 5, 57, 93, 94syl22anc 839 . 2 (𝜑 → (♯‘𝐿) = 𝑁)
9684, 95jca 515 1 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  {crab 3055  Vcvv 3398  cin 3852  wss 3853  c0 4223  {csn 4527   class class class wbr 5039  cfv 6358  (class class class)co 7191  Fincfn 8604  0cc0 10694  1c1 10695   · cmul 10699  cn 11795  0cn0 12055  cz 12141  chash 13861  cdvds 15778   gcd cgcd 16016  Basecbs 16666  0gc0g 16898  SubGrpcsubg 18491  Cntzccntz 18663  odcod 18870  LSSumclsm 18977  Abelcabl 19125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-er 8369  df-ec 8371  df-qs 8375  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-acn 9523  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-dvds 15779  df-gcd 16017  df-prm 16192  df-pc 16353  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-eqg 18496  df-ga 18638  df-cntz 18665  df-od 18874  df-lsm 18979  df-pj1 18980  df-cmn 19126  df-abl 19127
This theorem is referenced by:  ablfac1a  19410
  Copyright terms: Public domain W3C validator