Proof of Theorem ablfacrp2
Step | Hyp | Ref
| Expression |
1 | | ablfacrp.2 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) |
2 | | ablfacrp.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | 2 | nnnn0d 11702 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
4 | | ablfacrp.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
5 | 4 | nnnn0d 11702 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
6 | 3, 5 | nn0mulcld 11707 |
. . . . . . 7
⊢ (𝜑 → (𝑀 · 𝑁) ∈
ℕ0) |
7 | 1, 6 | eqeltrd 2858 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
8 | | ablfacrp.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
9 | 8 | fvexi 6460 |
. . . . . . 7
⊢ 𝐵 ∈ V |
10 | | hashclb 13464 |
. . . . . . 7
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0)) |
11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢ (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0) |
12 | 7, 11 | sylibr 226 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Fin) |
13 | | ablfacrp.k |
. . . . . 6
⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} |
14 | | ssrab2 3907 |
. . . . . 6
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ⊆ 𝐵 |
15 | 13, 14 | eqsstri 3853 |
. . . . 5
⊢ 𝐾 ⊆ 𝐵 |
16 | | ssfi 8468 |
. . . . 5
⊢ ((𝐵 ∈ Fin ∧ 𝐾 ⊆ 𝐵) → 𝐾 ∈ Fin) |
17 | 12, 15, 16 | sylancl 580 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Fin) |
18 | | hashcl 13462 |
. . . 4
⊢ (𝐾 ∈ Fin →
(♯‘𝐾) ∈
ℕ0) |
19 | 17, 18 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘𝐾) ∈
ℕ0) |
20 | | ablfacrp.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Abel) |
21 | 2 | nnzd 11833 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
22 | | ablfacrp.o |
. . . . . . . . 9
⊢ 𝑂 = (od‘𝐺) |
23 | 22, 8 | oddvdssubg 18644 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
24 | 20, 21, 23 | syl2anc 579 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
25 | 13, 24 | syl5eqel 2862 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
26 | 8 | lagsubg 18040 |
. . . . . 6
⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝐵)) |
27 | 25, 12, 26 | syl2anc 579 |
. . . . 5
⊢ (𝜑 → (♯‘𝐾) ∥ (♯‘𝐵)) |
28 | 2 | nncnd 11392 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 4 | nncnd 11392 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
30 | 28, 29 | mulcomd 10398 |
. . . . . 6
⊢ (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀)) |
31 | 1, 30 | eqtrd 2813 |
. . . . 5
⊢ (𝜑 → (♯‘𝐵) = (𝑁 · 𝑀)) |
32 | 27, 31 | breqtrd 4912 |
. . . 4
⊢ (𝜑 → (♯‘𝐾) ∥ (𝑁 · 𝑀)) |
33 | | ablfacrp.l |
. . . . 5
⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} |
34 | | ablfacrp.1 |
. . . . 5
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
35 | 8, 22, 13, 33, 20, 2, 4, 34, 1 | ablfacrplem 18851 |
. . . 4
⊢ (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1) |
36 | 19 | nn0zd 11832 |
. . . . 5
⊢ (𝜑 → (♯‘𝐾) ∈
ℤ) |
37 | 4 | nnzd 11833 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
38 | | coprmdvds 15772 |
. . . . 5
⊢
(((♯‘𝐾)
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 𝑀
∈ ℤ) → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀)) |
39 | 36, 37, 21, 38 | syl3anc 1439 |
. . . 4
⊢ (𝜑 → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀)) |
40 | 32, 35, 39 | mp2and 689 |
. . 3
⊢ (𝜑 → (♯‘𝐾) ∥ 𝑀) |
41 | 22, 8 | oddvdssubg 18644 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
42 | 20, 37, 41 | syl2anc 579 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
43 | 33, 42 | syl5eqel 2862 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (SubGrp‘𝐺)) |
44 | 8 | lagsubg 18040 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐿) ∥ (♯‘𝐵)) |
45 | 43, 12, 44 | syl2anc 579 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐿) ∥ (♯‘𝐵)) |
46 | 45, 1 | breqtrd 4912 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐿) ∥ (𝑀 · 𝑁)) |
47 | | gcdcom 15641 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
48 | 21, 37, 47 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
49 | 48, 34 | eqtr3d 2815 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
50 | 8, 22, 33, 13, 20, 4, 2, 49, 31 | ablfacrplem 18851 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐿) gcd 𝑀) = 1) |
51 | | ssrab2 3907 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 |
52 | 33, 51 | eqsstri 3853 |
. . . . . . . . . . 11
⊢ 𝐿 ⊆ 𝐵 |
53 | | ssfi 8468 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐿 ⊆ 𝐵) → 𝐿 ∈ Fin) |
54 | 12, 52, 53 | sylancl 580 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ Fin) |
55 | | hashcl 13462 |
. . . . . . . . . 10
⊢ (𝐿 ∈ Fin →
(♯‘𝐿) ∈
ℕ0) |
56 | 54, 55 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐿) ∈
ℕ0) |
57 | 56 | nn0zd 11832 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐿) ∈
ℤ) |
58 | | coprmdvds 15772 |
. . . . . . . 8
⊢
(((♯‘𝐿)
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁)) |
59 | 57, 21, 37, 58 | syl3anc 1439 |
. . . . . . 7
⊢ (𝜑 → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁)) |
60 | 46, 50, 59 | mp2and 689 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐿) ∥ 𝑁) |
61 | | dvdscmul 15415 |
. . . . . . 7
⊢
(((♯‘𝐿)
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 𝑀
∈ ℤ) → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))) |
62 | 57, 37, 21, 61 | syl3anc 1439 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))) |
63 | 60, 62 | mpd 15 |
. . . . 5
⊢ (𝜑 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)) |
64 | | eqid 2777 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
65 | | eqid 2777 |
. . . . . . . . . 10
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
66 | 8, 22, 13, 33, 20, 2, 4, 34, 1,
64, 65 | ablfacrp 18852 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐾 ∩ 𝐿) = {(0g‘𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵)) |
67 | 66 | simprd 491 |
. . . . . . . 8
⊢ (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵) |
68 | 67 | fveq2d 6450 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = (♯‘𝐵)) |
69 | | eqid 2777 |
. . . . . . . 8
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
70 | 66 | simpld 490 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∩ 𝐿) = {(0g‘𝐺)}) |
71 | 69, 20, 25, 43 | ablcntzd 18646 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ⊆ ((Cntz‘𝐺)‘𝐿)) |
72 | 65, 64, 69, 25, 43, 70, 71, 17, 54 | lsmhash 18502 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = ((♯‘𝐾) · (♯‘𝐿))) |
73 | 68, 72 | eqtr3d 2815 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐵) = ((♯‘𝐾) · (♯‘𝐿))) |
74 | 73, 1 | eqtr3d 2815 |
. . . . 5
⊢ (𝜑 → ((♯‘𝐾) · (♯‘𝐿)) = (𝑀 · 𝑁)) |
75 | 63, 74 | breqtrrd 4914 |
. . . 4
⊢ (𝜑 → (𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿))) |
76 | 64 | subg0cl 17986 |
. . . . . . . 8
⊢ (𝐿 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝐿) |
77 | | ne0i 4148 |
. . . . . . . 8
⊢
((0g‘𝐺) ∈ 𝐿 → 𝐿 ≠ ∅) |
78 | 43, 76, 77 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ≠ ∅) |
79 | | hashnncl 13472 |
. . . . . . . 8
⊢ (𝐿 ∈ Fin →
((♯‘𝐿) ∈
ℕ ↔ 𝐿 ≠
∅)) |
80 | 54, 79 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅)) |
81 | 78, 80 | mpbird 249 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐿) ∈
ℕ) |
82 | 81 | nnne0d 11425 |
. . . . 5
⊢ (𝜑 → (♯‘𝐿) ≠ 0) |
83 | | dvdsmulcr 15418 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧
(♯‘𝐾) ∈
ℤ ∧ ((♯‘𝐿) ∈ ℤ ∧ (♯‘𝐿) ≠ 0)) → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾))) |
84 | 21, 36, 57, 82, 83 | syl112anc 1442 |
. . . 4
⊢ (𝜑 → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾))) |
85 | 75, 84 | mpbid 224 |
. . 3
⊢ (𝜑 → 𝑀 ∥ (♯‘𝐾)) |
86 | | dvdseq 15443 |
. . 3
⊢
((((♯‘𝐾)
∈ ℕ0 ∧ 𝑀 ∈ ℕ0) ∧
((♯‘𝐾) ∥
𝑀 ∧ 𝑀 ∥ (♯‘𝐾))) → (♯‘𝐾) = 𝑀) |
87 | 19, 3, 40, 85, 86 | syl22anc 829 |
. 2
⊢ (𝜑 → (♯‘𝐾) = 𝑀) |
88 | | dvdsmulc 15416 |
. . . . . . 7
⊢
(((♯‘𝐾)
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))) |
89 | 36, 21, 37, 88 | syl3anc 1439 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))) |
90 | 40, 89 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)) |
91 | 90, 74 | breqtrrd 4914 |
. . . 4
⊢ (𝜑 → ((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿))) |
92 | 87, 2 | eqeltrd 2858 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐾) ∈
ℕ) |
93 | 92 | nnne0d 11425 |
. . . . 5
⊢ (𝜑 → (♯‘𝐾) ≠ 0) |
94 | | dvdscmulr 15417 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧
(♯‘𝐿) ∈
ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) →
(((♯‘𝐾)
· 𝑁) ∥
((♯‘𝐾) ·
(♯‘𝐿)) ↔
𝑁 ∥
(♯‘𝐿))) |
95 | 37, 57, 36, 93, 94 | syl112anc 1442 |
. . . 4
⊢ (𝜑 → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿))) |
96 | 91, 95 | mpbid 224 |
. . 3
⊢ (𝜑 → 𝑁 ∥ (♯‘𝐿)) |
97 | | dvdseq 15443 |
. . 3
⊢
((((♯‘𝐿)
∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧
((♯‘𝐿) ∥
𝑁 ∧ 𝑁 ∥ (♯‘𝐿))) → (♯‘𝐿) = 𝑁) |
98 | 56, 5, 60, 96, 97 | syl22anc 829 |
. 2
⊢ (𝜑 → (♯‘𝐿) = 𝑁) |
99 | 87, 98 | jca 507 |
1
⊢ (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁)) |