MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp2 Structured version   Visualization version   GIF version

Theorem ablfacrp2 19186
Description: The factors 𝐾, 𝐿 of ablfacrp 19185 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrp2 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp2
StepHypRef Expression
1 ablfacrp.2 . . . . . . 7 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
2 ablfacrp.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
32nnnn0d 11947 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
4 ablfacrp.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11947 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
63, 5nn0mulcld 11952 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
71, 6eqeltrd 2893 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ0)
8 ablfacrp.b . . . . . . . 8 𝐵 = (Base‘𝐺)
98fvexi 6663 . . . . . . 7 𝐵 ∈ V
10 hashclb 13719 . . . . . . 7 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
119, 10ax-mp 5 . . . . . 6 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
127, 11sylibr 237 . . . . 5 (𝜑𝐵 ∈ Fin)
13 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
1413ssrab3 4011 . . . . 5 𝐾𝐵
15 ssfi 8726 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
1612, 14, 15sylancl 589 . . . 4 (𝜑𝐾 ∈ Fin)
17 hashcl 13717 . . . 4 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
1816, 17syl 17 . . 3 (𝜑 → (♯‘𝐾) ∈ ℕ0)
19 ablfacrp.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
202nnzd 12078 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
21 ablfacrp.o . . . . . . . . 9 𝑂 = (od‘𝐺)
2221, 8oddvdssubg 18972 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2319, 20, 22syl2anc 587 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2413, 23eqeltrid 2897 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
258lagsubg 18338 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝐵))
2624, 12, 25syl2anc 587 . . . . 5 (𝜑 → (♯‘𝐾) ∥ (♯‘𝐵))
272nncnd 11645 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
284nncnd 11645 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2927, 28mulcomd 10655 . . . . . 6 (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀))
301, 29eqtrd 2836 . . . . 5 (𝜑 → (♯‘𝐵) = (𝑁 · 𝑀))
3126, 30breqtrd 5059 . . . 4 (𝜑 → (♯‘𝐾) ∥ (𝑁 · 𝑀))
32 ablfacrp.l . . . . 5 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
33 ablfacrp.1 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
348, 21, 13, 32, 19, 2, 4, 33, 1ablfacrplem 19184 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
3518nn0zd 12077 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℤ)
364nnzd 12078 . . . . 5 (𝜑𝑁 ∈ ℤ)
37 coprmdvds 15991 . . . . 5 (((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3835, 36, 20, 37syl3anc 1368 . . . 4 (𝜑 → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3931, 34, 38mp2and 698 . . 3 (𝜑 → (♯‘𝐾) ∥ 𝑀)
4021, 8oddvdssubg 18972 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4119, 36, 40syl2anc 587 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4232, 41eqeltrid 2897 . . . . . . . . 9 (𝜑𝐿 ∈ (SubGrp‘𝐺))
438lagsubg 18338 . . . . . . . . 9 ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐿) ∥ (♯‘𝐵))
4442, 12, 43syl2anc 587 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∥ (♯‘𝐵))
4544, 1breqtrd 5059 . . . . . . 7 (𝜑 → (♯‘𝐿) ∥ (𝑀 · 𝑁))
46 gcdcom 15856 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
4720, 36, 46syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
4847, 33eqtr3d 2838 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑀) = 1)
498, 21, 32, 13, 19, 4, 2, 48, 30ablfacrplem 19184 . . . . . . 7 (𝜑 → ((♯‘𝐿) gcd 𝑀) = 1)
5032ssrab3 4011 . . . . . . . . . . 11 𝐿𝐵
51 ssfi 8726 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐿𝐵) → 𝐿 ∈ Fin)
5212, 50, 51sylancl 589 . . . . . . . . . 10 (𝜑𝐿 ∈ Fin)
53 hashcl 13717 . . . . . . . . . 10 (𝐿 ∈ Fin → (♯‘𝐿) ∈ ℕ0)
5452, 53syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐿) ∈ ℕ0)
5554nn0zd 12077 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∈ ℤ)
56 coprmdvds 15991 . . . . . . . 8 (((♯‘𝐿) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5755, 20, 36, 56syl3anc 1368 . . . . . . 7 (𝜑 → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5845, 49, 57mp2and 698 . . . . . 6 (𝜑 → (♯‘𝐿) ∥ 𝑁)
59 dvdscmul 15632 . . . . . . 7 (((♯‘𝐿) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
6055, 36, 20, 59syl3anc 1368 . . . . . 6 (𝜑 → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
6158, 60mpd 15 . . . . 5 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))
62 eqid 2801 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
63 eqid 2801 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
648, 21, 13, 32, 19, 2, 4, 33, 1, 62, 63ablfacrp 19185 . . . . . . . . 9 (𝜑 → ((𝐾𝐿) = {(0g𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵))
6564simprd 499 . . . . . . . 8 (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵)
6665fveq2d 6653 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = (♯‘𝐵))
67 eqid 2801 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
6864simpld 498 . . . . . . . 8 (𝜑 → (𝐾𝐿) = {(0g𝐺)})
6967, 19, 24, 42ablcntzd 18974 . . . . . . . 8 (𝜑𝐾 ⊆ ((Cntz‘𝐺)‘𝐿))
7063, 62, 67, 24, 42, 68, 69, 16, 52lsmhash 18827 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = ((♯‘𝐾) · (♯‘𝐿)))
7166, 70eqtr3d 2838 . . . . . 6 (𝜑 → (♯‘𝐵) = ((♯‘𝐾) · (♯‘𝐿)))
7271, 1eqtr3d 2838 . . . . 5 (𝜑 → ((♯‘𝐾) · (♯‘𝐿)) = (𝑀 · 𝑁))
7361, 72breqtrrd 5061 . . . 4 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)))
7462subg0cl 18283 . . . . . . . 8 (𝐿 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐿)
75 ne0i 4253 . . . . . . . 8 ((0g𝐺) ∈ 𝐿𝐿 ≠ ∅)
7642, 74, 753syl 18 . . . . . . 7 (𝜑𝐿 ≠ ∅)
77 hashnncl 13727 . . . . . . . 8 (𝐿 ∈ Fin → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7852, 77syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7976, 78mpbird 260 . . . . . 6 (𝜑 → (♯‘𝐿) ∈ ℕ)
8079nnne0d 11679 . . . . 5 (𝜑 → (♯‘𝐿) ≠ 0)
81 dvdsmulcr 15635 . . . . 5 ((𝑀 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ ((♯‘𝐿) ∈ ℤ ∧ (♯‘𝐿) ≠ 0)) → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8220, 35, 55, 80, 81syl112anc 1371 . . . 4 (𝜑 → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8373, 82mpbid 235 . . 3 (𝜑𝑀 ∥ (♯‘𝐾))
84 dvdseq 15660 . . 3 ((((♯‘𝐾) ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((♯‘𝐾) ∥ 𝑀𝑀 ∥ (♯‘𝐾))) → (♯‘𝐾) = 𝑀)
8518, 3, 39, 83, 84syl22anc 837 . 2 (𝜑 → (♯‘𝐾) = 𝑀)
86 dvdsmulc 15633 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8735, 20, 36, 86syl3anc 1368 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8839, 87mpd 15 . . . . 5 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))
8988, 72breqtrrd 5061 . . . 4 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)))
9085, 2eqeltrd 2893 . . . . . 6 (𝜑 → (♯‘𝐾) ∈ ℕ)
9190nnne0d 11679 . . . . 5 (𝜑 → (♯‘𝐾) ≠ 0)
92 dvdscmulr 15634 . . . . 5 ((𝑁 ∈ ℤ ∧ (♯‘𝐿) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9336, 55, 35, 91, 92syl112anc 1371 . . . 4 (𝜑 → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9489, 93mpbid 235 . . 3 (𝜑𝑁 ∥ (♯‘𝐿))
95 dvdseq 15660 . . 3 ((((♯‘𝐿) ∈ ℕ0𝑁 ∈ ℕ0) ∧ ((♯‘𝐿) ∥ 𝑁𝑁 ∥ (♯‘𝐿))) → (♯‘𝐿) = 𝑁)
9654, 5, 58, 94, 95syl22anc 837 . 2 (𝜑 → (♯‘𝐿) = 𝑁)
9785, 96jca 515 1 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  {crab 3113  Vcvv 3444  cin 3883  wss 3884  c0 4246  {csn 4528   class class class wbr 5033  cfv 6328  (class class class)co 7139  Fincfn 8496  0cc0 10530  1c1 10531   · cmul 10535  cn 11629  0cn0 11889  cz 11973  chash 13690  cdvds 15603   gcd cgcd 15837  Basecbs 16479  0gc0g 16709  SubGrpcsubg 18269  Cntzccntz 18441  odcod 18648  LSSumclsm 18755  Abelcabl 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-eqg 18274  df-ga 18416  df-cntz 18443  df-od 18652  df-lsm 18757  df-pj1 18758  df-cmn 18904  df-abl 18905
This theorem is referenced by:  ablfac1a  19188
  Copyright terms: Public domain W3C validator