Proof of Theorem ablfacrp2
| Step | Hyp | Ref
| Expression |
| 1 | | ablfacrp.2 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁)) |
| 2 | | ablfacrp.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | 2 | nnnn0d 12587 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 4 | | ablfacrp.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 5 | 4 | nnnn0d 12587 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 6 | 3, 5 | nn0mulcld 12592 |
. . . . . . 7
⊢ (𝜑 → (𝑀 · 𝑁) ∈
ℕ0) |
| 7 | 1, 6 | eqeltrd 2841 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
| 8 | | ablfacrp.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 9 | 8 | fvexi 6920 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 10 | | hashclb 14397 |
. . . . . . 7
⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0)) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢ (𝐵 ∈ Fin ↔
(♯‘𝐵) ∈
ℕ0) |
| 12 | 7, 11 | sylibr 234 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 13 | | ablfacrp.k |
. . . . . 6
⊢ 𝐾 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} |
| 14 | 13 | ssrab3 4082 |
. . . . 5
⊢ 𝐾 ⊆ 𝐵 |
| 15 | | ssfi 9213 |
. . . . 5
⊢ ((𝐵 ∈ Fin ∧ 𝐾 ⊆ 𝐵) → 𝐾 ∈ Fin) |
| 16 | 12, 14, 15 | sylancl 586 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Fin) |
| 17 | | hashcl 14395 |
. . . 4
⊢ (𝐾 ∈ Fin →
(♯‘𝐾) ∈
ℕ0) |
| 18 | 16, 17 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘𝐾) ∈
ℕ0) |
| 19 | | ablfacrp.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 20 | 2 | nnzd 12640 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 21 | | ablfacrp.o |
. . . . . . . . 9
⊢ 𝑂 = (od‘𝐺) |
| 22 | 21, 8 | oddvdssubg 19873 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
| 23 | 19, 20, 22 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺)) |
| 24 | 13, 23 | eqeltrid 2845 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
| 25 | 8 | lagsubg 19213 |
. . . . . 6
⊢ ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝐵)) |
| 26 | 24, 12, 25 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (♯‘𝐾) ∥ (♯‘𝐵)) |
| 27 | 2 | nncnd 12282 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 28 | 4 | nncnd 12282 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 29 | 27, 28 | mulcomd 11282 |
. . . . . 6
⊢ (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀)) |
| 30 | 1, 29 | eqtrd 2777 |
. . . . 5
⊢ (𝜑 → (♯‘𝐵) = (𝑁 · 𝑀)) |
| 31 | 26, 30 | breqtrd 5169 |
. . . 4
⊢ (𝜑 → (♯‘𝐾) ∥ (𝑁 · 𝑀)) |
| 32 | | ablfacrp.l |
. . . . 5
⊢ 𝐿 = {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} |
| 33 | | ablfacrp.1 |
. . . . 5
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 34 | 8, 21, 13, 32, 19, 2, 4, 33, 1 | ablfacrplem 20085 |
. . . 4
⊢ (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1) |
| 35 | 18 | nn0zd 12639 |
. . . . 5
⊢ (𝜑 → (♯‘𝐾) ∈
ℤ) |
| 36 | 4 | nnzd 12640 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 37 | | coprmdvds 16690 |
. . . . 5
⊢
(((♯‘𝐾)
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 𝑀
∈ ℤ) → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀)) |
| 38 | 35, 36, 20, 37 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀)) |
| 39 | 31, 34, 38 | mp2and 699 |
. . 3
⊢ (𝜑 → (♯‘𝐾) ∥ 𝑀) |
| 40 | 21, 8 | oddvdssubg 19873 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
| 41 | 19, 36, 40 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |
| 42 | 32, 41 | eqeltrid 2845 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (SubGrp‘𝐺)) |
| 43 | 8 | lagsubg 19213 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐿) ∥ (♯‘𝐵)) |
| 44 | 42, 12, 43 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐿) ∥ (♯‘𝐵)) |
| 45 | 44, 1 | breqtrd 5169 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐿) ∥ (𝑀 · 𝑁)) |
| 46 | 20, 36 | gcdcomd 16551 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) |
| 47 | 46, 33 | eqtr3d 2779 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
| 48 | 8, 21, 32, 13, 19, 4, 2, 47, 30 | ablfacrplem 20085 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐿) gcd 𝑀) = 1) |
| 49 | 32 | ssrab3 4082 |
. . . . . . . . . . 11
⊢ 𝐿 ⊆ 𝐵 |
| 50 | | ssfi 9213 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝐿 ⊆ 𝐵) → 𝐿 ∈ Fin) |
| 51 | 12, 49, 50 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ Fin) |
| 52 | | hashcl 14395 |
. . . . . . . . . 10
⊢ (𝐿 ∈ Fin →
(♯‘𝐿) ∈
ℕ0) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐿) ∈
ℕ0) |
| 54 | 53 | nn0zd 12639 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐿) ∈
ℤ) |
| 55 | | coprmdvds 16690 |
. . . . . . . 8
⊢
(((♯‘𝐿)
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁)) |
| 56 | 54, 20, 36, 55 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁)) |
| 57 | 45, 48, 56 | mp2and 699 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐿) ∥ 𝑁) |
| 58 | | dvdscmul 16320 |
. . . . . . 7
⊢
(((♯‘𝐿)
∈ ℤ ∧ 𝑁
∈ ℤ ∧ 𝑀
∈ ℤ) → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))) |
| 59 | 54, 36, 20, 58 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))) |
| 60 | 57, 59 | mpd 15 |
. . . . 5
⊢ (𝜑 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)) |
| 61 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 62 | | eqid 2737 |
. . . . . . . . . 10
⊢
(LSSum‘𝐺) =
(LSSum‘𝐺) |
| 63 | 8, 21, 13, 32, 19, 2, 4, 33, 1,
61, 62 | ablfacrp 20086 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐾 ∩ 𝐿) = {(0g‘𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵)) |
| 64 | 63 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵) |
| 65 | 64 | fveq2d 6910 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = (♯‘𝐵)) |
| 66 | | eqid 2737 |
. . . . . . . 8
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 67 | 63 | simpld 494 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∩ 𝐿) = {(0g‘𝐺)}) |
| 68 | 66, 19, 24, 42 | ablcntzd 19875 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ⊆ ((Cntz‘𝐺)‘𝐿)) |
| 69 | 62, 61, 66, 24, 42, 67, 68, 16, 51 | lsmhash 19723 |
. . . . . . 7
⊢ (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = ((♯‘𝐾) · (♯‘𝐿))) |
| 70 | 65, 69 | eqtr3d 2779 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐵) = ((♯‘𝐾) · (♯‘𝐿))) |
| 71 | 70, 1 | eqtr3d 2779 |
. . . . 5
⊢ (𝜑 → ((♯‘𝐾) · (♯‘𝐿)) = (𝑀 · 𝑁)) |
| 72 | 60, 71 | breqtrrd 5171 |
. . . 4
⊢ (𝜑 → (𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿))) |
| 73 | 61 | subg0cl 19152 |
. . . . . . . 8
⊢ (𝐿 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝐿) |
| 74 | | ne0i 4341 |
. . . . . . . 8
⊢
((0g‘𝐺) ∈ 𝐿 → 𝐿 ≠ ∅) |
| 75 | 42, 73, 74 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ≠ ∅) |
| 76 | | hashnncl 14405 |
. . . . . . . 8
⊢ (𝐿 ∈ Fin →
((♯‘𝐿) ∈
ℕ ↔ 𝐿 ≠
∅)) |
| 77 | 51, 76 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅)) |
| 78 | 75, 77 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐿) ∈
ℕ) |
| 79 | 78 | nnne0d 12316 |
. . . . 5
⊢ (𝜑 → (♯‘𝐿) ≠ 0) |
| 80 | | dvdsmulcr 16323 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧
(♯‘𝐾) ∈
ℤ ∧ ((♯‘𝐿) ∈ ℤ ∧ (♯‘𝐿) ≠ 0)) → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾))) |
| 81 | 20, 35, 54, 79, 80 | syl112anc 1376 |
. . . 4
⊢ (𝜑 → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾))) |
| 82 | 72, 81 | mpbid 232 |
. . 3
⊢ (𝜑 → 𝑀 ∥ (♯‘𝐾)) |
| 83 | | dvdseq 16351 |
. . 3
⊢
((((♯‘𝐾)
∈ ℕ0 ∧ 𝑀 ∈ ℕ0) ∧
((♯‘𝐾) ∥
𝑀 ∧ 𝑀 ∥ (♯‘𝐾))) → (♯‘𝐾) = 𝑀) |
| 84 | 18, 3, 39, 82, 83 | syl22anc 839 |
. 2
⊢ (𝜑 → (♯‘𝐾) = 𝑀) |
| 85 | | dvdsmulc 16321 |
. . . . . . 7
⊢
(((♯‘𝐾)
∈ ℤ ∧ 𝑀
∈ ℤ ∧ 𝑁
∈ ℤ) → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))) |
| 86 | 35, 20, 36, 85 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))) |
| 87 | 39, 86 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)) |
| 88 | 87, 71 | breqtrrd 5171 |
. . . 4
⊢ (𝜑 → ((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿))) |
| 89 | 84, 2 | eqeltrd 2841 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐾) ∈
ℕ) |
| 90 | 89 | nnne0d 12316 |
. . . . 5
⊢ (𝜑 → (♯‘𝐾) ≠ 0) |
| 91 | | dvdscmulr 16322 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧
(♯‘𝐿) ∈
ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) →
(((♯‘𝐾)
· 𝑁) ∥
((♯‘𝐾) ·
(♯‘𝐿)) ↔
𝑁 ∥
(♯‘𝐿))) |
| 92 | 36, 54, 35, 90, 91 | syl112anc 1376 |
. . . 4
⊢ (𝜑 → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿))) |
| 93 | 88, 92 | mpbid 232 |
. . 3
⊢ (𝜑 → 𝑁 ∥ (♯‘𝐿)) |
| 94 | | dvdseq 16351 |
. . 3
⊢
((((♯‘𝐿)
∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧
((♯‘𝐿) ∥
𝑁 ∧ 𝑁 ∥ (♯‘𝐿))) → (♯‘𝐿) = 𝑁) |
| 95 | 53, 5, 57, 93, 94 | syl22anc 839 |
. 2
⊢ (𝜑 → (♯‘𝐿) = 𝑁) |
| 96 | 84, 95 | jca 511 |
1
⊢ (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁)) |