MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrp2 Structured version   Visualization version   GIF version

Theorem ablfacrp2 19585
Description: The factors 𝐾, 𝐿 of ablfacrp 19584 have the expected orders (which allows for repeated application to decompose 𝐺 into subgroups of prime-power order). Lemma 6.1C.2 of [Shapiro], p. 199. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b 𝐵 = (Base‘𝐺)
ablfacrp.o 𝑂 = (od‘𝐺)
ablfacrp.k 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
ablfacrp.l 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
ablfacrp.g (𝜑𝐺 ∈ Abel)
ablfacrp.m (𝜑𝑀 ∈ ℕ)
ablfacrp.n (𝜑𝑁 ∈ ℕ)
ablfacrp.1 (𝜑 → (𝑀 gcd 𝑁) = 1)
ablfacrp.2 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
Assertion
Ref Expression
ablfacrp2 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑂   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐾(𝑥)   𝐿(𝑥)

Proof of Theorem ablfacrp2
StepHypRef Expression
1 ablfacrp.2 . . . . . . 7 (𝜑 → (♯‘𝐵) = (𝑀 · 𝑁))
2 ablfacrp.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
32nnnn0d 12223 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
4 ablfacrp.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12223 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
63, 5nn0mulcld 12228 . . . . . . 7 (𝜑 → (𝑀 · 𝑁) ∈ ℕ0)
71, 6eqeltrd 2839 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ0)
8 ablfacrp.b . . . . . . . 8 𝐵 = (Base‘𝐺)
98fvexi 6770 . . . . . . 7 𝐵 ∈ V
10 hashclb 14001 . . . . . . 7 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
119, 10ax-mp 5 . . . . . 6 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
127, 11sylibr 233 . . . . 5 (𝜑𝐵 ∈ Fin)
13 ablfacrp.k . . . . . 6 𝐾 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀}
1413ssrab3 4011 . . . . 5 𝐾𝐵
15 ssfi 8918 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐾𝐵) → 𝐾 ∈ Fin)
1612, 14, 15sylancl 585 . . . 4 (𝜑𝐾 ∈ Fin)
17 hashcl 13999 . . . 4 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
1816, 17syl 17 . . 3 (𝜑 → (♯‘𝐾) ∈ ℕ0)
19 ablfacrp.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
202nnzd 12354 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
21 ablfacrp.o . . . . . . . . 9 𝑂 = (od‘𝐺)
2221, 8oddvdssubg 19371 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2319, 20, 22syl2anc 583 . . . . . . 7 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑀} ∈ (SubGrp‘𝐺))
2413, 23eqeltrid 2843 . . . . . 6 (𝜑𝐾 ∈ (SubGrp‘𝐺))
258lagsubg 18733 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐾) ∥ (♯‘𝐵))
2624, 12, 25syl2anc 583 . . . . 5 (𝜑 → (♯‘𝐾) ∥ (♯‘𝐵))
272nncnd 11919 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
284nncnd 11919 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2927, 28mulcomd 10927 . . . . . 6 (𝜑 → (𝑀 · 𝑁) = (𝑁 · 𝑀))
301, 29eqtrd 2778 . . . . 5 (𝜑 → (♯‘𝐵) = (𝑁 · 𝑀))
3126, 30breqtrd 5096 . . . 4 (𝜑 → (♯‘𝐾) ∥ (𝑁 · 𝑀))
32 ablfacrp.l . . . . 5 𝐿 = {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}
33 ablfacrp.1 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
348, 21, 13, 32, 19, 2, 4, 33, 1ablfacrplem 19583 . . . 4 (𝜑 → ((♯‘𝐾) gcd 𝑁) = 1)
3518nn0zd 12353 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℤ)
364nnzd 12354 . . . . 5 (𝜑𝑁 ∈ ℤ)
37 coprmdvds 16286 . . . . 5 (((♯‘𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3835, 36, 20, 37syl3anc 1369 . . . 4 (𝜑 → (((♯‘𝐾) ∥ (𝑁 · 𝑀) ∧ ((♯‘𝐾) gcd 𝑁) = 1) → (♯‘𝐾) ∥ 𝑀))
3931, 34, 38mp2and 695 . . 3 (𝜑 → (♯‘𝐾) ∥ 𝑀)
4021, 8oddvdssubg 19371 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4119, 36, 40syl2anc 583 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
4232, 41eqeltrid 2843 . . . . . . . . 9 (𝜑𝐿 ∈ (SubGrp‘𝐺))
438lagsubg 18733 . . . . . . . . 9 ((𝐿 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝐿) ∥ (♯‘𝐵))
4442, 12, 43syl2anc 583 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∥ (♯‘𝐵))
4544, 1breqtrd 5096 . . . . . . 7 (𝜑 → (♯‘𝐿) ∥ (𝑀 · 𝑁))
4620, 36gcdcomd 16149 . . . . . . . . 9 (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀))
4746, 33eqtr3d 2780 . . . . . . . 8 (𝜑 → (𝑁 gcd 𝑀) = 1)
488, 21, 32, 13, 19, 4, 2, 47, 30ablfacrplem 19583 . . . . . . 7 (𝜑 → ((♯‘𝐿) gcd 𝑀) = 1)
4932ssrab3 4011 . . . . . . . . . . 11 𝐿𝐵
50 ssfi 8918 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝐿𝐵) → 𝐿 ∈ Fin)
5112, 49, 50sylancl 585 . . . . . . . . . 10 (𝜑𝐿 ∈ Fin)
52 hashcl 13999 . . . . . . . . . 10 (𝐿 ∈ Fin → (♯‘𝐿) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐿) ∈ ℕ0)
5453nn0zd 12353 . . . . . . . 8 (𝜑 → (♯‘𝐿) ∈ ℤ)
55 coprmdvds 16286 . . . . . . . 8 (((♯‘𝐿) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5654, 20, 36, 55syl3anc 1369 . . . . . . 7 (𝜑 → (((♯‘𝐿) ∥ (𝑀 · 𝑁) ∧ ((♯‘𝐿) gcd 𝑀) = 1) → (♯‘𝐿) ∥ 𝑁))
5745, 48, 56mp2and 695 . . . . . 6 (𝜑 → (♯‘𝐿) ∥ 𝑁)
58 dvdscmul 15920 . . . . . . 7 (((♯‘𝐿) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
5954, 36, 20, 58syl3anc 1369 . . . . . 6 (𝜑 → ((♯‘𝐿) ∥ 𝑁 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁)))
6057, 59mpd 15 . . . . 5 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ (𝑀 · 𝑁))
61 eqid 2738 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
62 eqid 2738 . . . . . . . . . 10 (LSSum‘𝐺) = (LSSum‘𝐺)
638, 21, 13, 32, 19, 2, 4, 33, 1, 61, 62ablfacrp 19584 . . . . . . . . 9 (𝜑 → ((𝐾𝐿) = {(0g𝐺)} ∧ (𝐾(LSSum‘𝐺)𝐿) = 𝐵))
6463simprd 495 . . . . . . . 8 (𝜑 → (𝐾(LSSum‘𝐺)𝐿) = 𝐵)
6564fveq2d 6760 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = (♯‘𝐵))
66 eqid 2738 . . . . . . . 8 (Cntz‘𝐺) = (Cntz‘𝐺)
6763simpld 494 . . . . . . . 8 (𝜑 → (𝐾𝐿) = {(0g𝐺)})
6866, 19, 24, 42ablcntzd 19373 . . . . . . . 8 (𝜑𝐾 ⊆ ((Cntz‘𝐺)‘𝐿))
6962, 61, 66, 24, 42, 67, 68, 16, 51lsmhash 19226 . . . . . . 7 (𝜑 → (♯‘(𝐾(LSSum‘𝐺)𝐿)) = ((♯‘𝐾) · (♯‘𝐿)))
7065, 69eqtr3d 2780 . . . . . 6 (𝜑 → (♯‘𝐵) = ((♯‘𝐾) · (♯‘𝐿)))
7170, 1eqtr3d 2780 . . . . 5 (𝜑 → ((♯‘𝐾) · (♯‘𝐿)) = (𝑀 · 𝑁))
7260, 71breqtrrd 5098 . . . 4 (𝜑 → (𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)))
7361subg0cl 18678 . . . . . . . 8 (𝐿 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐿)
74 ne0i 4265 . . . . . . . 8 ((0g𝐺) ∈ 𝐿𝐿 ≠ ∅)
7542, 73, 743syl 18 . . . . . . 7 (𝜑𝐿 ≠ ∅)
76 hashnncl 14009 . . . . . . . 8 (𝐿 ∈ Fin → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7751, 76syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐿) ∈ ℕ ↔ 𝐿 ≠ ∅))
7875, 77mpbird 256 . . . . . 6 (𝜑 → (♯‘𝐿) ∈ ℕ)
7978nnne0d 11953 . . . . 5 (𝜑 → (♯‘𝐿) ≠ 0)
80 dvdsmulcr 15923 . . . . 5 ((𝑀 ∈ ℤ ∧ (♯‘𝐾) ∈ ℤ ∧ ((♯‘𝐿) ∈ ℤ ∧ (♯‘𝐿) ≠ 0)) → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8120, 35, 54, 79, 80syl112anc 1372 . . . 4 (𝜑 → ((𝑀 · (♯‘𝐿)) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑀 ∥ (♯‘𝐾)))
8272, 81mpbid 231 . . 3 (𝜑𝑀 ∥ (♯‘𝐾))
83 dvdseq 15951 . . 3 ((((♯‘𝐾) ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((♯‘𝐾) ∥ 𝑀𝑀 ∥ (♯‘𝐾))) → (♯‘𝐾) = 𝑀)
8418, 3, 39, 82, 83syl22anc 835 . 2 (𝜑 → (♯‘𝐾) = 𝑀)
85 dvdsmulc 15921 . . . . . . 7 (((♯‘𝐾) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8635, 20, 36, 85syl3anc 1369 . . . . . 6 (𝜑 → ((♯‘𝐾) ∥ 𝑀 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁)))
8739, 86mpd 15 . . . . 5 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ (𝑀 · 𝑁))
8887, 71breqtrrd 5098 . . . 4 (𝜑 → ((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)))
8984, 2eqeltrd 2839 . . . . . 6 (𝜑 → (♯‘𝐾) ∈ ℕ)
9089nnne0d 11953 . . . . 5 (𝜑 → (♯‘𝐾) ≠ 0)
91 dvdscmulr 15922 . . . . 5 ((𝑁 ∈ ℤ ∧ (♯‘𝐿) ∈ ℤ ∧ ((♯‘𝐾) ∈ ℤ ∧ (♯‘𝐾) ≠ 0)) → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9236, 54, 35, 90, 91syl112anc 1372 . . . 4 (𝜑 → (((♯‘𝐾) · 𝑁) ∥ ((♯‘𝐾) · (♯‘𝐿)) ↔ 𝑁 ∥ (♯‘𝐿)))
9388, 92mpbid 231 . . 3 (𝜑𝑁 ∥ (♯‘𝐿))
94 dvdseq 15951 . . 3 ((((♯‘𝐿) ∈ ℕ0𝑁 ∈ ℕ0) ∧ ((♯‘𝐿) ∥ 𝑁𝑁 ∥ (♯‘𝐿))) → (♯‘𝐿) = 𝑁)
9553, 5, 57, 93, 94syl22anc 835 . 2 (𝜑 → (♯‘𝐿) = 𝑁)
9684, 95jca 511 1 (𝜑 → ((♯‘𝐾) = 𝑀 ∧ (♯‘𝐿) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  0cn0 12163  cz 12249  chash 13972  cdvds 15891   gcd cgcd 16129  Basecbs 16840  0gc0g 17067  SubGrpcsubg 18664  Cntzccntz 18836  odcod 19047  LSSumclsm 19154  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-eqg 18669  df-ga 18811  df-cntz 18838  df-od 19051  df-lsm 19156  df-pj1 19157  df-cmn 19303  df-abl 19304
This theorem is referenced by:  ablfac1a  19587
  Copyright terms: Public domain W3C validator