MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm2 Structured version   Visualization version   GIF version

Theorem pj1lmhm2 21030
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l 𝐿 = (LSubSp‘𝑊)
pj1lmhm.s = (LSSum‘𝑊)
pj1lmhm.z 0 = (0g𝑊)
pj1lmhm.p 𝑃 = (proj1𝑊)
pj1lmhm.1 (𝜑𝑊 ∈ LMod)
pj1lmhm.2 (𝜑𝑇𝐿)
pj1lmhm.3 (𝜑𝑈𝐿)
pj1lmhm.4 (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
pj1lmhm2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇)))

Proof of Theorem pj1lmhm2
StepHypRef Expression
1 pj1lmhm.l . . 3 𝐿 = (LSubSp‘𝑊)
2 pj1lmhm.s . . 3 = (LSSum‘𝑊)
3 pj1lmhm.z . . 3 0 = (0g𝑊)
4 pj1lmhm.p . . 3 𝑃 = (proj1𝑊)
5 pj1lmhm.1 . . 3 (𝜑𝑊 ∈ LMod)
6 pj1lmhm.2 . . 3 (𝜑𝑇𝐿)
7 pj1lmhm.3 . . 3 (𝜑𝑈𝐿)
8 pj1lmhm.4 . . 3 (𝜑 → (𝑇𝑈) = { 0 })
91, 2, 3, 4, 5, 6, 7, 8pj1lmhm 21029 . 2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))
10 eqid 2731 . . . . 5 (+g𝑊) = (+g𝑊)
11 eqid 2731 . . . . 5 (Cntz‘𝑊) = (Cntz‘𝑊)
121lsssssubg 20886 . . . . . . 7 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
135, 12syl 17 . . . . . 6 (𝜑𝐿 ⊆ (SubGrp‘𝑊))
1413, 6sseldd 3930 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
1513, 7sseldd 3930 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
16 lmodabl 20837 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
175, 16syl 17 . . . . . 6 (𝜑𝑊 ∈ Abel)
1811, 17, 14, 15ablcntzd 19764 . . . . 5 (𝜑𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
1910, 2, 3, 11, 14, 15, 8, 18, 4pj1f 19604 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
2019frnd 6654 . . 3 (𝜑 → ran (𝑇𝑃𝑈) ⊆ 𝑇)
21 eqid 2731 . . . 4 (𝑊s 𝑇) = (𝑊s 𝑇)
2221, 1reslmhm2b 20983 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝐿 ∧ ran (𝑇𝑃𝑈) ⊆ 𝑇) → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇))))
235, 6, 20, 22syl3anc 1373 . 2 (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇))))
249, 23mpbid 232 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cin 3896  wss 3897  {csn 4571  ran crn 5612  cfv 6476  (class class class)co 7341  s cress 17136  +gcplusg 17156  0gc0g 17338  SubGrpcsubg 19028  Cntzccntz 19222  LSSumclsm 19541  proj1cpj1 19542  Abelcabl 19688  LModclmod 20788  LSubSpclss 20859   LMHom clmhm 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-sca 17172  df-vsca 17173  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-ghm 19120  df-cntz 19224  df-lsm 19543  df-pj1 19544  df-cmn 19689  df-abl 19690  df-mgp 20054  df-ur 20095  df-ring 20148  df-lmod 20790  df-lss 20860  df-lmhm 20951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator