| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pj1lmhm2 | Structured version Visualization version GIF version | ||
| Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| pj1lmhm.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| pj1lmhm.s | ⊢ ⊕ = (LSSum‘𝑊) |
| pj1lmhm.z | ⊢ 0 = (0g‘𝑊) |
| pj1lmhm.p | ⊢ 𝑃 = (proj1‘𝑊) |
| pj1lmhm.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| pj1lmhm.2 | ⊢ (𝜑 → 𝑇 ∈ 𝐿) |
| pj1lmhm.3 | ⊢ (𝜑 → 𝑈 ∈ 𝐿) |
| pj1lmhm.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| Ref | Expression |
|---|---|
| pj1lmhm2 | ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1lmhm.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 2 | pj1lmhm.s | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | pj1lmhm.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 4 | pj1lmhm.p | . . 3 ⊢ 𝑃 = (proj1‘𝑊) | |
| 5 | pj1lmhm.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | pj1lmhm.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐿) | |
| 7 | pj1lmhm.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐿) | |
| 8 | pj1lmhm.4 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | pj1lmhm 21043 | . 2 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) |
| 10 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 11 | eqid 2733 | . . . . 5 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 12 | 1 | lsssssubg 20900 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 14 | 13, 6 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
| 15 | 13, 7 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 16 | lmodabl 20851 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 17 | 5, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 18 | 11, 17, 14, 15 | ablcntzd 19777 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈)) |
| 19 | 10, 2, 3, 11, 14, 15, 8, 18, 4 | pj1f 19617 | . . . 4 ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
| 20 | 19 | frnd 6667 | . . 3 ⊢ (𝜑 → ran (𝑇𝑃𝑈) ⊆ 𝑇) |
| 21 | eqid 2733 | . . . 4 ⊢ (𝑊 ↾s 𝑇) = (𝑊 ↾s 𝑇) | |
| 22 | 21, 1 | reslmhm2b 20997 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ ran (𝑇𝑃𝑈) ⊆ 𝑇) → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
| 23 | 5, 6, 20, 22 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
| 24 | 9, 23 | mpbid 232 | 1 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 {csn 4577 ran crn 5622 ‘cfv 6489 (class class class)co 7355 ↾s cress 17148 +gcplusg 17168 0gc0g 17350 SubGrpcsubg 19041 Cntzccntz 19235 LSSumclsm 19554 proj1cpj1 19555 Abelcabl 19701 LModclmod 20802 LSubSpclss 20873 LMHom clmhm 20962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-sca 17184 df-vsca 17185 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-ghm 19133 df-cntz 19237 df-lsm 19556 df-pj1 19557 df-cmn 19702 df-abl 19703 df-mgp 20067 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 df-lmhm 20965 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |