| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pj1lmhm2 | Structured version Visualization version GIF version | ||
| Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| pj1lmhm.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| pj1lmhm.s | ⊢ ⊕ = (LSSum‘𝑊) |
| pj1lmhm.z | ⊢ 0 = (0g‘𝑊) |
| pj1lmhm.p | ⊢ 𝑃 = (proj1‘𝑊) |
| pj1lmhm.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| pj1lmhm.2 | ⊢ (𝜑 → 𝑇 ∈ 𝐿) |
| pj1lmhm.3 | ⊢ (𝜑 → 𝑈 ∈ 𝐿) |
| pj1lmhm.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| Ref | Expression |
|---|---|
| pj1lmhm2 | ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1lmhm.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 2 | pj1lmhm.s | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | pj1lmhm.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 4 | pj1lmhm.p | . . 3 ⊢ 𝑃 = (proj1‘𝑊) | |
| 5 | pj1lmhm.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | pj1lmhm.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐿) | |
| 7 | pj1lmhm.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐿) | |
| 8 | pj1lmhm.4 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | pj1lmhm 21058 | . 2 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) |
| 10 | eqid 2735 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 11 | eqid 2735 | . . . . 5 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 12 | 1 | lsssssubg 20915 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 14 | 13, 6 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
| 15 | 13, 7 | sseldd 3959 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 16 | lmodabl 20866 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 17 | 5, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 18 | 11, 17, 14, 15 | ablcntzd 19838 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈)) |
| 19 | 10, 2, 3, 11, 14, 15, 8, 18, 4 | pj1f 19678 | . . . 4 ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
| 20 | 19 | frnd 6714 | . . 3 ⊢ (𝜑 → ran (𝑇𝑃𝑈) ⊆ 𝑇) |
| 21 | eqid 2735 | . . . 4 ⊢ (𝑊 ↾s 𝑇) = (𝑊 ↾s 𝑇) | |
| 22 | 21, 1 | reslmhm2b 21012 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ ran (𝑇𝑃𝑈) ⊆ 𝑇) → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
| 23 | 5, 6, 20, 22 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
| 24 | 9, 23 | mpbid 232 | 1 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 {csn 4601 ran crn 5655 ‘cfv 6531 (class class class)co 7405 ↾s cress 17251 +gcplusg 17271 0gc0g 17453 SubGrpcsubg 19103 Cntzccntz 19298 LSSumclsm 19615 proj1cpj1 19616 Abelcabl 19762 LModclmod 20817 LSubSpclss 20888 LMHom clmhm 20977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-sca 17287 df-vsca 17288 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-ghm 19196 df-cntz 19300 df-lsm 19617 df-pj1 19618 df-cmn 19763 df-abl 19764 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-lmhm 20980 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |