| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pj1lmhm2 | Structured version Visualization version GIF version | ||
| Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| pj1lmhm.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
| pj1lmhm.s | ⊢ ⊕ = (LSSum‘𝑊) |
| pj1lmhm.z | ⊢ 0 = (0g‘𝑊) |
| pj1lmhm.p | ⊢ 𝑃 = (proj1‘𝑊) |
| pj1lmhm.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| pj1lmhm.2 | ⊢ (𝜑 → 𝑇 ∈ 𝐿) |
| pj1lmhm.3 | ⊢ (𝜑 → 𝑈 ∈ 𝐿) |
| pj1lmhm.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| Ref | Expression |
|---|---|
| pj1lmhm2 | ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1lmhm.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
| 2 | pj1lmhm.s | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
| 3 | pj1lmhm.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 4 | pj1lmhm.p | . . 3 ⊢ 𝑃 = (proj1‘𝑊) | |
| 5 | pj1lmhm.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | pj1lmhm.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐿) | |
| 7 | pj1lmhm.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐿) | |
| 8 | pj1lmhm.4 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | pj1lmhm 21029 | . 2 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) |
| 10 | eqid 2731 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 11 | eqid 2731 | . . . . 5 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 12 | 1 | lsssssubg 20886 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿 ⊆ (SubGrp‘𝑊)) |
| 14 | 13, 6 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
| 15 | 13, 7 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 16 | lmodabl 20837 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 17 | 5, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 18 | 11, 17, 14, 15 | ablcntzd 19764 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈)) |
| 19 | 10, 2, 3, 11, 14, 15, 8, 18, 4 | pj1f 19604 | . . . 4 ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
| 20 | 19 | frnd 6654 | . . 3 ⊢ (𝜑 → ran (𝑇𝑃𝑈) ⊆ 𝑇) |
| 21 | eqid 2731 | . . . 4 ⊢ (𝑊 ↾s 𝑇) = (𝑊 ↾s 𝑇) | |
| 22 | 21, 1 | reslmhm2b 20983 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ ran (𝑇𝑃𝑈) ⊆ 𝑇) → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
| 23 | 5, 6, 20, 22 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
| 24 | 9, 23 | mpbid 232 | 1 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 {csn 4571 ran crn 5612 ‘cfv 6476 (class class class)co 7341 ↾s cress 17136 +gcplusg 17156 0gc0g 17338 SubGrpcsubg 19028 Cntzccntz 19222 LSSumclsm 19541 proj1cpj1 19542 Abelcabl 19688 LModclmod 20788 LSubSpclss 20859 LMHom clmhm 20948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-sca 17172 df-vsca 17173 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-ghm 19120 df-cntz 19224 df-lsm 19543 df-pj1 19544 df-cmn 19689 df-abl 19690 df-mgp 20054 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 df-lmhm 20951 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |