Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pj1lmhm2 | Structured version Visualization version GIF version |
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
pj1lmhm.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
pj1lmhm.s | ⊢ ⊕ = (LSSum‘𝑊) |
pj1lmhm.z | ⊢ 0 = (0g‘𝑊) |
pj1lmhm.p | ⊢ 𝑃 = (proj1‘𝑊) |
pj1lmhm.1 | ⊢ (𝜑 → 𝑊 ∈ LMod) |
pj1lmhm.2 | ⊢ (𝜑 → 𝑇 ∈ 𝐿) |
pj1lmhm.3 | ⊢ (𝜑 → 𝑈 ∈ 𝐿) |
pj1lmhm.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
Ref | Expression |
---|---|
pj1lmhm2 | ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1lmhm.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
2 | pj1lmhm.s | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
3 | pj1lmhm.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
4 | pj1lmhm.p | . . 3 ⊢ 𝑃 = (proj1‘𝑊) | |
5 | pj1lmhm.1 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | pj1lmhm.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝐿) | |
7 | pj1lmhm.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐿) | |
8 | pj1lmhm.4 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | pj1lmhm 20467 | . 2 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) |
10 | eqid 2737 | . . . . 5 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
11 | eqid 2737 | . . . . 5 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
12 | 1 | lsssssubg 20325 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊)) |
13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐿 ⊆ (SubGrp‘𝑊)) |
14 | 13, 6 | sseldd 3936 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
15 | 13, 7 | sseldd 3936 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
16 | lmodabl 20275 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
17 | 5, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Abel) |
18 | 11, 17, 14, 15 | ablcntzd 19553 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ ((Cntz‘𝑊)‘𝑈)) |
19 | 10, 2, 3, 11, 14, 15, 8, 18, 4 | pj1f 19398 | . . . 4 ⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
20 | 19 | frnd 6663 | . . 3 ⊢ (𝜑 → ran (𝑇𝑃𝑈) ⊆ 𝑇) |
21 | eqid 2737 | . . . 4 ⊢ (𝑊 ↾s 𝑇) = (𝑊 ↾s 𝑇) | |
22 | 21, 1 | reslmhm2b 20421 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ ran (𝑇𝑃𝑈) ⊆ 𝑇) → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
23 | 5, 6, 20, 22 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇)))) |
24 | 9, 23 | mpbid 231 | 1 ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∩ cin 3900 ⊆ wss 3901 {csn 4577 ran crn 5625 ‘cfv 6483 (class class class)co 7341 ↾s cress 17038 +gcplusg 17059 0gc0g 17247 SubGrpcsubg 18845 Cntzccntz 19017 LSSumclsm 19335 proj1cpj1 19336 Abelcabl 19482 LModclmod 20228 LSubSpclss 20298 LMHom clmhm 20386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-sca 17075 df-vsca 17076 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-submnd 18528 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-ghm 18928 df-cntz 19019 df-lsm 19337 df-pj1 19338 df-cmn 19483 df-abl 19484 df-mgp 19815 df-ur 19832 df-ring 19879 df-lmod 20230 df-lss 20299 df-lmhm 20389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |