![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj1lmhm2 | Structured version Visualization version GIF version |
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
pj1lmhm.l | โข ๐ฟ = (LSubSpโ๐) |
pj1lmhm.s | โข โ = (LSSumโ๐) |
pj1lmhm.z | โข 0 = (0gโ๐) |
pj1lmhm.p | โข ๐ = (proj1โ๐) |
pj1lmhm.1 | โข (๐ โ ๐ โ LMod) |
pj1lmhm.2 | โข (๐ โ ๐ โ ๐ฟ) |
pj1lmhm.3 | โข (๐ โ ๐ โ ๐ฟ) |
pj1lmhm.4 | โข (๐ โ (๐ โฉ ๐) = { 0 }) |
Ref | Expression |
---|---|
pj1lmhm2 | โข (๐ โ (๐๐๐) โ ((๐ โพs (๐ โ ๐)) LMHom (๐ โพs ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1lmhm.l | . . 3 โข ๐ฟ = (LSubSpโ๐) | |
2 | pj1lmhm.s | . . 3 โข โ = (LSSumโ๐) | |
3 | pj1lmhm.z | . . 3 โข 0 = (0gโ๐) | |
4 | pj1lmhm.p | . . 3 โข ๐ = (proj1โ๐) | |
5 | pj1lmhm.1 | . . 3 โข (๐ โ ๐ โ LMod) | |
6 | pj1lmhm.2 | . . 3 โข (๐ โ ๐ โ ๐ฟ) | |
7 | pj1lmhm.3 | . . 3 โข (๐ โ ๐ โ ๐ฟ) | |
8 | pj1lmhm.4 | . . 3 โข (๐ โ (๐ โฉ ๐) = { 0 }) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | pj1lmhm 20711 | . 2 โข (๐ โ (๐๐๐) โ ((๐ โพs (๐ โ ๐)) LMHom ๐)) |
10 | eqid 2733 | . . . . 5 โข (+gโ๐) = (+gโ๐) | |
11 | eqid 2733 | . . . . 5 โข (Cntzโ๐) = (Cntzโ๐) | |
12 | 1 | lsssssubg 20569 | . . . . . . 7 โข (๐ โ LMod โ ๐ฟ โ (SubGrpโ๐)) |
13 | 5, 12 | syl 17 | . . . . . 6 โข (๐ โ ๐ฟ โ (SubGrpโ๐)) |
14 | 13, 6 | sseldd 3984 | . . . . 5 โข (๐ โ ๐ โ (SubGrpโ๐)) |
15 | 13, 7 | sseldd 3984 | . . . . 5 โข (๐ โ ๐ โ (SubGrpโ๐)) |
16 | lmodabl 20519 | . . . . . . 7 โข (๐ โ LMod โ ๐ โ Abel) | |
17 | 5, 16 | syl 17 | . . . . . 6 โข (๐ โ ๐ โ Abel) |
18 | 11, 17, 14, 15 | ablcntzd 19725 | . . . . 5 โข (๐ โ ๐ โ ((Cntzโ๐)โ๐)) |
19 | 10, 2, 3, 11, 14, 15, 8, 18, 4 | pj1f 19565 | . . . 4 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
20 | 19 | frnd 6726 | . . 3 โข (๐ โ ran (๐๐๐) โ ๐) |
21 | eqid 2733 | . . . 4 โข (๐ โพs ๐) = (๐ โพs ๐) | |
22 | 21, 1 | reslmhm2b 20665 | . . 3 โข ((๐ โ LMod โง ๐ โ ๐ฟ โง ran (๐๐๐) โ ๐) โ ((๐๐๐) โ ((๐ โพs (๐ โ ๐)) LMHom ๐) โ (๐๐๐) โ ((๐ โพs (๐ โ ๐)) LMHom (๐ โพs ๐)))) |
23 | 5, 6, 20, 22 | syl3anc 1372 | . 2 โข (๐ โ ((๐๐๐) โ ((๐ โพs (๐ โ ๐)) LMHom ๐) โ (๐๐๐) โ ((๐ โพs (๐ โ ๐)) LMHom (๐ โพs ๐)))) |
24 | 9, 23 | mpbid 231 | 1 โข (๐ โ (๐๐๐) โ ((๐ โพs (๐ โ ๐)) LMHom (๐ โพs ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1542 โ wcel 2107 โฉ cin 3948 โ wss 3949 {csn 4629 ran crn 5678 โcfv 6544 (class class class)co 7409 โพs cress 17173 +gcplusg 17197 0gc0g 17385 SubGrpcsubg 19000 Cntzccntz 19179 LSSumclsm 19502 proj1cpj1 19503 Abelcabl 19649 LModclmod 20471 LSubSpclss 20542 LMHom clmhm 20630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-sca 17213 df-vsca 17214 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-ghm 19090 df-cntz 19181 df-lsm 19504 df-pj1 19505 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-lmod 20473 df-lss 20543 df-lmhm 20633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |