MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvexp Structured version   Visualization version   GIF version

Theorem qabvexp 27553
Description: Induct the product rule abvmul 20724 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvexp ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))

Proof of Theorem qabvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . . . 7 (𝑘 = 0 → (𝑀𝑘) = (𝑀↑0))
21fveq2d 6830 . . . . . 6 (𝑘 = 0 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑0)))
3 oveq2 7361 . . . . . 6 (𝑘 = 0 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑0))
42, 3eqeq12d 2745 . . . . 5 (𝑘 = 0 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0)))
54imbi2d 340 . . . 4 (𝑘 = 0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))))
6 oveq2 7361 . . . . . . 7 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
76fveq2d 6830 . . . . . 6 (𝑘 = 𝑛 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑛)))
8 oveq2 7361 . . . . . 6 (𝑘 = 𝑛 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑛))
97, 8eqeq12d 2745 . . . . 5 (𝑘 = 𝑛 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)))
109imbi2d 340 . . . 4 (𝑘 = 𝑛 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))))
11 oveq2 7361 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑀𝑘) = (𝑀↑(𝑛 + 1)))
1211fveq2d 6830 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑(𝑛 + 1))))
13 oveq2 7361 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑(𝑛 + 1)))
1412, 13eqeq12d 2745 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
1514imbi2d 340 . . . 4 (𝑘 = (𝑛 + 1) → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
16 oveq2 7361 . . . . . . 7 (𝑘 = 𝑁 → (𝑀𝑘) = (𝑀𝑁))
1716fveq2d 6830 . . . . . 6 (𝑘 = 𝑁 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑁)))
18 oveq2 7361 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑁))
1917, 18eqeq12d 2745 . . . . 5 (𝑘 = 𝑁 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
2019imbi2d 340 . . . 4 (𝑘 = 𝑁 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))))
21 ax-1ne0 11097 . . . . . . 7 1 ≠ 0
22 qabsabv.a . . . . . . . 8 𝐴 = (AbsVal‘𝑄)
23 qrng.q . . . . . . . . 9 𝑄 = (ℂflds ℚ)
2423qrng1 27549 . . . . . . . 8 1 = (1r𝑄)
2523qrng0 27548 . . . . . . . 8 0 = (0g𝑄)
2622, 24, 25abv1z 20727 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
2721, 26mpan2 691 . . . . . 6 (𝐹𝐴 → (𝐹‘1) = 1)
2827adantr 480 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘1) = 1)
29 qcn 12882 . . . . . . . 8 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
3029adantl 481 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → 𝑀 ∈ ℂ)
3130exp0d 14065 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑀↑0) = 1)
3231fveq2d 6830 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = (𝐹‘1))
3323qrngbas 27546 . . . . . . . 8 ℚ = (Base‘𝑄)
3422, 33abvcl 20719 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
3534recnd 11162 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℂ)
3635exp0d 14065 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹𝑀)↑0) = 1)
3728, 32, 363eqtr4d 2774 . . . 4 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))
38 oveq1 7360 . . . . . . 7 ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
39 expp1 13993 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4030, 39sylan 580 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4140fveq2d 6830 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = (𝐹‘((𝑀𝑛) · 𝑀)))
42 simpll 766 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝐹𝐴)
43 qexpcl 14002 . . . . . . . . . . 11 ((𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
4443adantll 714 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
45 simplr 768 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℚ)
46 qex 12880 . . . . . . . . . . . 12 ℚ ∈ V
47 cnfldmul 21287 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
4823, 47ressmulr 17229 . . . . . . . . . . . 12 (ℚ ∈ V → · = (.r𝑄))
4946, 48ax-mp 5 . . . . . . . . . . 11 · = (.r𝑄)
5022, 33, 49abvmul 20724 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5142, 44, 45, 50syl3anc 1373 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5241, 51eqtrd 2764 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
53 expp1 13993 . . . . . . . . 9 (((𝐹𝑀) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5435, 53sylan 580 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5552, 54eqeq12d 2745 . . . . . . 7 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)) ↔ ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀))))
5638, 55imbitrrid 246 . . . . . 6 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
5756expcom 413 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
5857a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)) → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
595, 10, 15, 20, 37, 58nn0ind 12589 . . 3 (𝑁 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
6059com12 32 . 2 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑁 ∈ ℕ0 → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
61603impia 1117 1 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  0cn0 12402  cq 12867  cexp 13986  s cress 17159  .rcmulr 17180  AbsValcabv 20711  fldccnfld 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-ico 13272  df-fz 13429  df-seq 13927  df-exp 13987  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-subrng 20449  df-subrg 20473  df-drng 20634  df-abv 20712  df-cnfld 21280
This theorem is referenced by:  ostth2lem2  27561  ostth2lem3  27562  ostth3  27565
  Copyright terms: Public domain W3C validator