MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvexp Structured version   Visualization version   GIF version

Theorem qabvexp 27685
Description: Induct the product rule abvmul 20839 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvexp ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))

Proof of Theorem qabvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . . 7 (𝑘 = 0 → (𝑀𝑘) = (𝑀↑0))
21fveq2d 6911 . . . . . 6 (𝑘 = 0 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑0)))
3 oveq2 7439 . . . . . 6 (𝑘 = 0 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑0))
42, 3eqeq12d 2751 . . . . 5 (𝑘 = 0 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0)))
54imbi2d 340 . . . 4 (𝑘 = 0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))))
6 oveq2 7439 . . . . . . 7 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
76fveq2d 6911 . . . . . 6 (𝑘 = 𝑛 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑛)))
8 oveq2 7439 . . . . . 6 (𝑘 = 𝑛 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑛))
97, 8eqeq12d 2751 . . . . 5 (𝑘 = 𝑛 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)))
109imbi2d 340 . . . 4 (𝑘 = 𝑛 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))))
11 oveq2 7439 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑀𝑘) = (𝑀↑(𝑛 + 1)))
1211fveq2d 6911 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑(𝑛 + 1))))
13 oveq2 7439 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑(𝑛 + 1)))
1412, 13eqeq12d 2751 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
1514imbi2d 340 . . . 4 (𝑘 = (𝑛 + 1) → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
16 oveq2 7439 . . . . . . 7 (𝑘 = 𝑁 → (𝑀𝑘) = (𝑀𝑁))
1716fveq2d 6911 . . . . . 6 (𝑘 = 𝑁 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑁)))
18 oveq2 7439 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑁))
1917, 18eqeq12d 2751 . . . . 5 (𝑘 = 𝑁 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
2019imbi2d 340 . . . 4 (𝑘 = 𝑁 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))))
21 ax-1ne0 11222 . . . . . . 7 1 ≠ 0
22 qabsabv.a . . . . . . . 8 𝐴 = (AbsVal‘𝑄)
23 qrng.q . . . . . . . . 9 𝑄 = (ℂflds ℚ)
2423qrng1 27681 . . . . . . . 8 1 = (1r𝑄)
2523qrng0 27680 . . . . . . . 8 0 = (0g𝑄)
2622, 24, 25abv1z 20842 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
2721, 26mpan2 691 . . . . . 6 (𝐹𝐴 → (𝐹‘1) = 1)
2827adantr 480 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘1) = 1)
29 qcn 13003 . . . . . . . 8 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
3029adantl 481 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → 𝑀 ∈ ℂ)
3130exp0d 14177 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑀↑0) = 1)
3231fveq2d 6911 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = (𝐹‘1))
3323qrngbas 27678 . . . . . . . 8 ℚ = (Base‘𝑄)
3422, 33abvcl 20834 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
3534recnd 11287 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℂ)
3635exp0d 14177 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹𝑀)↑0) = 1)
3728, 32, 363eqtr4d 2785 . . . 4 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))
38 oveq1 7438 . . . . . . 7 ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
39 expp1 14106 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4030, 39sylan 580 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4140fveq2d 6911 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = (𝐹‘((𝑀𝑛) · 𝑀)))
42 simpll 767 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝐹𝐴)
43 qexpcl 14115 . . . . . . . . . . 11 ((𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
4443adantll 714 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
45 simplr 769 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℚ)
46 qex 13001 . . . . . . . . . . . 12 ℚ ∈ V
47 cnfldmul 21390 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
4823, 47ressmulr 17353 . . . . . . . . . . . 12 (ℚ ∈ V → · = (.r𝑄))
4946, 48ax-mp 5 . . . . . . . . . . 11 · = (.r𝑄)
5022, 33, 49abvmul 20839 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5142, 44, 45, 50syl3anc 1370 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5241, 51eqtrd 2775 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
53 expp1 14106 . . . . . . . . 9 (((𝐹𝑀) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5435, 53sylan 580 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5552, 54eqeq12d 2751 . . . . . . 7 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)) ↔ ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀))))
5638, 55imbitrrid 246 . . . . . 6 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
5756expcom 413 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
5857a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)) → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
595, 10, 15, 20, 37, 58nn0ind 12711 . . 3 (𝑁 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
6059com12 32 . 2 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑁 ∈ ℕ0 → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
61603impia 1116 1 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  0cn0 12524  cq 12988  cexp 14099  s cress 17274  .rcmulr 17299  AbsValcabv 20826  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-ico 13390  df-fz 13545  df-seq 14040  df-exp 14100  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrng 20563  df-subrg 20587  df-drng 20748  df-abv 20827  df-cnfld 21383
This theorem is referenced by:  ostth2lem2  27693  ostth2lem3  27694  ostth3  27697
  Copyright terms: Public domain W3C validator