MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvexp Structured version   Visualization version   GIF version

Theorem qabvexp 26375
Description: Induct the product rule abvmul 19732 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvexp ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))

Proof of Theorem qabvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7191 . . . . . . 7 (𝑘 = 0 → (𝑀𝑘) = (𝑀↑0))
21fveq2d 6691 . . . . . 6 (𝑘 = 0 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑0)))
3 oveq2 7191 . . . . . 6 (𝑘 = 0 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑0))
42, 3eqeq12d 2755 . . . . 5 (𝑘 = 0 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0)))
54imbi2d 344 . . . 4 (𝑘 = 0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))))
6 oveq2 7191 . . . . . . 7 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
76fveq2d 6691 . . . . . 6 (𝑘 = 𝑛 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑛)))
8 oveq2 7191 . . . . . 6 (𝑘 = 𝑛 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑛))
97, 8eqeq12d 2755 . . . . 5 (𝑘 = 𝑛 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)))
109imbi2d 344 . . . 4 (𝑘 = 𝑛 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))))
11 oveq2 7191 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑀𝑘) = (𝑀↑(𝑛 + 1)))
1211fveq2d 6691 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑(𝑛 + 1))))
13 oveq2 7191 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑(𝑛 + 1)))
1412, 13eqeq12d 2755 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
1514imbi2d 344 . . . 4 (𝑘 = (𝑛 + 1) → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
16 oveq2 7191 . . . . . . 7 (𝑘 = 𝑁 → (𝑀𝑘) = (𝑀𝑁))
1716fveq2d 6691 . . . . . 6 (𝑘 = 𝑁 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑁)))
18 oveq2 7191 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑁))
1917, 18eqeq12d 2755 . . . . 5 (𝑘 = 𝑁 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
2019imbi2d 344 . . . 4 (𝑘 = 𝑁 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))))
21 ax-1ne0 10697 . . . . . . 7 1 ≠ 0
22 qabsabv.a . . . . . . . 8 𝐴 = (AbsVal‘𝑄)
23 qrng.q . . . . . . . . 9 𝑄 = (ℂflds ℚ)
2423qrng1 26371 . . . . . . . 8 1 = (1r𝑄)
2523qrng0 26370 . . . . . . . 8 0 = (0g𝑄)
2622, 24, 25abv1z 19735 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
2721, 26mpan2 691 . . . . . 6 (𝐹𝐴 → (𝐹‘1) = 1)
2827adantr 484 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘1) = 1)
29 qcn 12458 . . . . . . . 8 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
3029adantl 485 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → 𝑀 ∈ ℂ)
3130exp0d 13609 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑀↑0) = 1)
3231fveq2d 6691 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = (𝐹‘1))
3323qrngbas 26368 . . . . . . . 8 ℚ = (Base‘𝑄)
3422, 33abvcl 19727 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
3534recnd 10760 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℂ)
3635exp0d 13609 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹𝑀)↑0) = 1)
3728, 32, 363eqtr4d 2784 . . . 4 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))
38 oveq1 7190 . . . . . . 7 ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
39 expp1 13541 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4030, 39sylan 583 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4140fveq2d 6691 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = (𝐹‘((𝑀𝑛) · 𝑀)))
42 simpll 767 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝐹𝐴)
43 qexpcl 13550 . . . . . . . . . . 11 ((𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
4443adantll 714 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
45 simplr 769 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℚ)
46 qex 12456 . . . . . . . . . . . 12 ℚ ∈ V
47 cnfldmul 20236 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
4823, 47ressmulr 16741 . . . . . . . . . . . 12 (ℚ ∈ V → · = (.r𝑄))
4946, 48ax-mp 5 . . . . . . . . . . 11 · = (.r𝑄)
5022, 33, 49abvmul 19732 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5142, 44, 45, 50syl3anc 1372 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5241, 51eqtrd 2774 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
53 expp1 13541 . . . . . . . . 9 (((𝐹𝑀) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5435, 53sylan 583 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5552, 54eqeq12d 2755 . . . . . . 7 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)) ↔ ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀))))
5638, 55syl5ibr 249 . . . . . 6 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
5756expcom 417 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
5857a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)) → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
595, 10, 15, 20, 37, 58nn0ind 12171 . . 3 (𝑁 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
6059com12 32 . 2 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑁 ∈ ℕ0 → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
61603impia 1118 1 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  Vcvv 3400  cfv 6350  (class class class)co 7183  cc 10626  0cc0 10628  1c1 10629   + caddc 10631   · cmul 10633  0cn0 11989  cq 12443  cexp 13534  s cress 16600  .rcmulr 16682  AbsValcabv 19719  fldccnfld 20230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-addf 10707  ax-mulf 10708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-tpos 7934  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-map 8452  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-2 11792  df-3 11793  df-4 11794  df-5 11795  df-6 11796  df-7 11797  df-8 11798  df-9 11799  df-n0 11990  df-z 12076  df-dec 12193  df-uz 12338  df-q 12444  df-ico 12840  df-fz 12995  df-seq 13474  df-exp 13535  df-struct 16601  df-ndx 16602  df-slot 16603  df-base 16605  df-sets 16606  df-ress 16607  df-plusg 16694  df-mulr 16695  df-starv 16696  df-tset 16700  df-ple 16701  df-ds 16703  df-unif 16704  df-0g 16831  df-mgm 17981  df-sgrp 18030  df-mnd 18041  df-grp 18235  df-minusg 18236  df-subg 18407  df-cmn 19039  df-mgp 19372  df-ur 19384  df-ring 19431  df-cring 19432  df-oppr 19508  df-dvdsr 19526  df-unit 19527  df-invr 19557  df-dvr 19568  df-drng 19636  df-subrg 19665  df-abv 19720  df-cnfld 20231
This theorem is referenced by:  ostth2lem2  26383  ostth2lem3  26384  ostth3  26387
  Copyright terms: Public domain W3C validator