MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvexp Structured version   Visualization version   GIF version

Theorem qabvexp 27562
Description: Induct the product rule abvmul 20734 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
Assertion
Ref Expression
qabvexp ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))

Proof of Theorem qabvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . . 7 (𝑘 = 0 → (𝑀𝑘) = (𝑀↑0))
21fveq2d 6826 . . . . . 6 (𝑘 = 0 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑0)))
3 oveq2 7354 . . . . . 6 (𝑘 = 0 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑0))
42, 3eqeq12d 2747 . . . . 5 (𝑘 = 0 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0)))
54imbi2d 340 . . . 4 (𝑘 = 0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))))
6 oveq2 7354 . . . . . . 7 (𝑘 = 𝑛 → (𝑀𝑘) = (𝑀𝑛))
76fveq2d 6826 . . . . . 6 (𝑘 = 𝑛 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑛)))
8 oveq2 7354 . . . . . 6 (𝑘 = 𝑛 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑛))
97, 8eqeq12d 2747 . . . . 5 (𝑘 = 𝑛 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)))
109imbi2d 340 . . . 4 (𝑘 = 𝑛 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛))))
11 oveq2 7354 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑀𝑘) = (𝑀↑(𝑛 + 1)))
1211fveq2d 6826 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀↑(𝑛 + 1))))
13 oveq2 7354 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑(𝑛 + 1)))
1412, 13eqeq12d 2747 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
1514imbi2d 340 . . . 4 (𝑘 = (𝑛 + 1) → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
16 oveq2 7354 . . . . . . 7 (𝑘 = 𝑁 → (𝑀𝑘) = (𝑀𝑁))
1716fveq2d 6826 . . . . . 6 (𝑘 = 𝑁 → (𝐹‘(𝑀𝑘)) = (𝐹‘(𝑀𝑁)))
18 oveq2 7354 . . . . . 6 (𝑘 = 𝑁 → ((𝐹𝑀)↑𝑘) = ((𝐹𝑀)↑𝑁))
1917, 18eqeq12d 2747 . . . . 5 (𝑘 = 𝑁 → ((𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘) ↔ (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
2019imbi2d 340 . . . 4 (𝑘 = 𝑁 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑘)) = ((𝐹𝑀)↑𝑘)) ↔ ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))))
21 ax-1ne0 11072 . . . . . . 7 1 ≠ 0
22 qabsabv.a . . . . . . . 8 𝐴 = (AbsVal‘𝑄)
23 qrng.q . . . . . . . . 9 𝑄 = (ℂflds ℚ)
2423qrng1 27558 . . . . . . . 8 1 = (1r𝑄)
2523qrng0 27557 . . . . . . . 8 0 = (0g𝑄)
2622, 24, 25abv1z 20737 . . . . . . 7 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
2721, 26mpan2 691 . . . . . 6 (𝐹𝐴 → (𝐹‘1) = 1)
2827adantr 480 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘1) = 1)
29 qcn 12858 . . . . . . . 8 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
3029adantl 481 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → 𝑀 ∈ ℂ)
3130exp0d 14044 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑀↑0) = 1)
3231fveq2d 6826 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = (𝐹‘1))
3323qrngbas 27555 . . . . . . . 8 ℚ = (Base‘𝑄)
3422, 33abvcl 20729 . . . . . . 7 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℝ)
3534recnd 11137 . . . . . 6 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹𝑀) ∈ ℂ)
3635exp0d 14044 . . . . 5 ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹𝑀)↑0) = 1)
3728, 32, 363eqtr4d 2776 . . . 4 ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹𝑀)↑0))
38 oveq1 7353 . . . . . . 7 ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
39 expp1 13972 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4030, 39sylan 580 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀𝑛) · 𝑀))
4140fveq2d 6826 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = (𝐹‘((𝑀𝑛) · 𝑀)))
42 simpll 766 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝐹𝐴)
43 qexpcl 13981 . . . . . . . . . . 11 ((𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
4443adantll 714 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℚ)
45 simplr 768 . . . . . . . . . 10 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℚ)
46 qex 12856 . . . . . . . . . . . 12 ℚ ∈ V
47 cnfldmul 21297 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
4823, 47ressmulr 17208 . . . . . . . . . . . 12 (ℚ ∈ V → · = (.r𝑄))
4946, 48ax-mp 5 . . . . . . . . . . 11 · = (.r𝑄)
5022, 33, 49abvmul 20734 . . . . . . . . . 10 ((𝐹𝐴 ∧ (𝑀𝑛) ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5142, 44, 45, 50syl3anc 1373 . . . . . . . . 9 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑀𝑛) · 𝑀)) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
5241, 51eqtrd 2766 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)))
53 expp1 13972 . . . . . . . . 9 (((𝐹𝑀) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5435, 53sylan 580 . . . . . . . 8 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹𝑀)↑(𝑛 + 1)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀)))
5552, 54eqeq12d 2747 . . . . . . 7 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)) ↔ ((𝐹‘(𝑀𝑛)) · (𝐹𝑀)) = (((𝐹𝑀)↑𝑛) · (𝐹𝑀))))
5638, 55imbitrrid 246 . . . . . 6 (((𝐹𝐴𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1))))
5756expcom 413 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → ((𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
5857a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑛)) = ((𝐹𝑀)↑𝑛)) → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹𝑀)↑(𝑛 + 1)))))
595, 10, 15, 20, 37, 58nn0ind 12565 . . 3 (𝑁 ∈ ℕ0 → ((𝐹𝐴𝑀 ∈ ℚ) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
6059com12 32 . 2 ((𝐹𝐴𝑀 ∈ ℚ) → (𝑁 ∈ ℕ0 → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁)))
61603impia 1117 1 ((𝐹𝐴𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀𝑁)) = ((𝐹𝑀)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  0cn0 12378  cq 12843  cexp 13965  s cress 17138  .rcmulr 17159  AbsValcabv 20721  fldccnfld 21289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-ico 13248  df-fz 13405  df-seq 13906  df-exp 13966  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-subg 19033  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrng 20459  df-subrg 20483  df-drng 20644  df-abv 20722  df-cnfld 21290
This theorem is referenced by:  ostth2lem2  27570  ostth2lem3  27571  ostth3  27574
  Copyright terms: Public domain W3C validator