Step | Hyp | Ref
| Expression |
1 | | oveq2 7315 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝑀↑𝑘) = (𝑀↑0)) |
2 | 1 | fveq2d 6808 |
. . . . . 6
⊢ (𝑘 = 0 → (𝐹‘(𝑀↑𝑘)) = (𝐹‘(𝑀↑0))) |
3 | | oveq2 7315 |
. . . . . 6
⊢ (𝑘 = 0 → ((𝐹‘𝑀)↑𝑘) = ((𝐹‘𝑀)↑0)) |
4 | 2, 3 | eqeq12d 2752 |
. . . . 5
⊢ (𝑘 = 0 → ((𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑0)) = ((𝐹‘𝑀)↑0))) |
5 | 4 | imbi2d 341 |
. . . 4
⊢ (𝑘 = 0 → (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘)) ↔ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹‘𝑀)↑0)))) |
6 | | oveq2 7315 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝑀↑𝑘) = (𝑀↑𝑛)) |
7 | 6 | fveq2d 6808 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑀↑𝑘)) = (𝐹‘(𝑀↑𝑛))) |
8 | | oveq2 7315 |
. . . . . 6
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑀)↑𝑘) = ((𝐹‘𝑀)↑𝑛)) |
9 | 7, 8 | eqeq12d 2752 |
. . . . 5
⊢ (𝑘 = 𝑛 → ((𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛))) |
10 | 9 | imbi2d 341 |
. . . 4
⊢ (𝑘 = 𝑛 → (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘)) ↔ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)))) |
11 | | oveq2 7315 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → (𝑀↑𝑘) = (𝑀↑(𝑛 + 1))) |
12 | 11 | fveq2d 6808 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘(𝑀↑𝑘)) = (𝐹‘(𝑀↑(𝑛 + 1)))) |
13 | | oveq2 7315 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑀)↑𝑘) = ((𝐹‘𝑀)↑(𝑛 + 1))) |
14 | 12, 13 | eqeq12d 2752 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘𝑀)↑(𝑛 + 1)))) |
15 | 14 | imbi2d 341 |
. . . 4
⊢ (𝑘 = (𝑛 + 1) → (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘)) ↔ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘𝑀)↑(𝑛 + 1))))) |
16 | | oveq2 7315 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (𝑀↑𝑘) = (𝑀↑𝑁)) |
17 | 16 | fveq2d 6808 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝐹‘(𝑀↑𝑘)) = (𝐹‘(𝑀↑𝑁))) |
18 | | oveq2 7315 |
. . . . . 6
⊢ (𝑘 = 𝑁 → ((𝐹‘𝑀)↑𝑘) = ((𝐹‘𝑀)↑𝑁)) |
19 | 17, 18 | eqeq12d 2752 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘) ↔ (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁))) |
20 | 19 | imbi2d 341 |
. . . 4
⊢ (𝑘 = 𝑁 → (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑘)) = ((𝐹‘𝑀)↑𝑘)) ↔ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁)))) |
21 | | ax-1ne0 10990 |
. . . . . . 7
⊢ 1 ≠
0 |
22 | | qabsabv.a |
. . . . . . . 8
⊢ 𝐴 = (AbsVal‘𝑄) |
23 | | qrng.q |
. . . . . . . . 9
⊢ 𝑄 = (ℂfld
↾s ℚ) |
24 | 23 | qrng1 26819 |
. . . . . . . 8
⊢ 1 =
(1r‘𝑄) |
25 | 23 | qrng0 26818 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑄) |
26 | 22, 24, 25 | abv1z 20141 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1) |
27 | 21, 26 | mpan2 689 |
. . . . . 6
⊢ (𝐹 ∈ 𝐴 → (𝐹‘1) = 1) |
28 | 27 | adantr 482 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘1) = 1) |
29 | | qcn 12753 |
. . . . . . . 8
⊢ (𝑀 ∈ ℚ → 𝑀 ∈
ℂ) |
30 | 29 | adantl 483 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → 𝑀 ∈ ℂ) |
31 | 30 | exp0d 13908 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝑀↑0) = 1) |
32 | 31 | fveq2d 6808 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = (𝐹‘1)) |
33 | 23 | qrngbas 26816 |
. . . . . . . 8
⊢ ℚ =
(Base‘𝑄) |
34 | 22, 33 | abvcl 20133 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘𝑀) ∈ ℝ) |
35 | 34 | recnd 11053 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘𝑀) ∈ ℂ) |
36 | 35 | exp0d 13908 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → ((𝐹‘𝑀)↑0) = 1) |
37 | 28, 32, 36 | 3eqtr4d 2786 |
. . . 4
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑0)) = ((𝐹‘𝑀)↑0)) |
38 | | oveq1 7314 |
. . . . . . 7
⊢ ((𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛) → ((𝐹‘(𝑀↑𝑛)) · (𝐹‘𝑀)) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘𝑀))) |
39 | | expp1 13839 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝑀↑(𝑛 + 1)) = ((𝑀↑𝑛) · 𝑀)) |
40 | 30, 39 | sylan 581 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀↑(𝑛 + 1)) = ((𝑀↑𝑛) · 𝑀)) |
41 | 40 | fveq2d 6808 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = (𝐹‘((𝑀↑𝑛) · 𝑀))) |
42 | | simpll 765 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝐹 ∈ 𝐴) |
43 | | qexpcl 13848 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℚ ∧ 𝑛 ∈ ℕ0)
→ (𝑀↑𝑛) ∈
ℚ) |
44 | 43 | adantll 712 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝑀↑𝑛) ∈ ℚ) |
45 | | simplr 767 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈
ℚ) |
46 | | qex 12751 |
. . . . . . . . . . . 12
⊢ ℚ
∈ V |
47 | | cnfldmul 20652 |
. . . . . . . . . . . . 13
⊢ ·
= (.r‘ℂfld) |
48 | 23, 47 | ressmulr 17066 |
. . . . . . . . . . . 12
⊢ (ℚ
∈ V → · = (.r‘𝑄)) |
49 | 46, 48 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ·
= (.r‘𝑄) |
50 | 22, 33, 49 | abvmul 20138 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑀↑𝑛) ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐹‘((𝑀↑𝑛) · 𝑀)) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘𝑀))) |
51 | 42, 44, 45, 50 | syl3anc 1371 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘((𝑀↑𝑛) · 𝑀)) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘𝑀))) |
52 | 41, 51 | eqtrd 2776 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘(𝑀↑𝑛)) · (𝐹‘𝑀))) |
53 | | expp1 13839 |
. . . . . . . . 9
⊢ (((𝐹‘𝑀) ∈ ℂ ∧ 𝑛 ∈ ℕ0) → ((𝐹‘𝑀)↑(𝑛 + 1)) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘𝑀))) |
54 | 35, 53 | sylan 581 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘𝑀)↑(𝑛 + 1)) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘𝑀))) |
55 | 52, 54 | eqeq12d 2752 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘𝑀)↑(𝑛 + 1)) ↔ ((𝐹‘(𝑀↑𝑛)) · (𝐹‘𝑀)) = (((𝐹‘𝑀)↑𝑛) · (𝐹‘𝑀)))) |
56 | 38, 55 | syl5ibr 246 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) ∧ 𝑛 ∈ ℕ0) → ((𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘𝑀)↑(𝑛 + 1)))) |
57 | 56 | expcom 415 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → ((𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘𝑀)↑(𝑛 + 1))))) |
58 | 57 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑛)) = ((𝐹‘𝑀)↑𝑛)) → ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑(𝑛 + 1))) = ((𝐹‘𝑀)↑(𝑛 + 1))))) |
59 | 5, 10, 15, 20, 37, 58 | nn0ind 12465 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁))) |
60 | 59 | com12 32 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ) → (𝑁 ∈ ℕ0 → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁))) |
61 | 60 | 3impia 1117 |
1
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑀 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑀↑𝑁)) = ((𝐹‘𝑀)↑𝑁)) |