Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addneintrd | Structured version Visualization version GIF version |
Description: Introducing a term on the left-hand side of a sum in a negated equality. Contrapositive of addcanad 11273. Consequence of addcand 11271. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
addneintrd.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
addneintrd | ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addneintrd.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
2 | muld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addcomd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | addcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 2, 3, 4 | addcand 11271 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
6 | 5 | necon3bid 2985 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) ≠ (𝐴 + 𝐶) ↔ 𝐵 ≠ 𝐶)) |
7 | 1, 6 | mpbird 256 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2940 (class class class)co 7329 ℂcc 10962 + caddc 10967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 |
This theorem is referenced by: xov1plusxeqvd 13323 chordthmlem 26080 aks6d1c2p2 40347 fourierdlem53 44025 |
Copyright terms: Public domain | W3C validator |