![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidl1el | Structured version Visualization version GIF version |
Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lidlcl.b | ⊢ 𝐵 = (Base‘𝑅) |
lidl1el.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
lidl1el | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
2 | lidlcl.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | 1, 2 | lidlss 21239 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ 𝐵) |
4 | 3 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
5 | eqid 2734 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | lidl1el.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
7 | 1, 5, 6 | ringridm 20283 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
8 | 7 | ad2ant2rl 749 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
9 | 2, 1, 5 | lidlmcl 21252 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 1 ∈ 𝐼)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
10 | 9 | ancom2s 650 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
11 | 8, 10 | eqeltrrd 2839 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → 𝑎 ∈ 𝐼) |
12 | 11 | expr 456 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → (𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐼)) |
13 | 12 | ssrdv 4000 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐵 ⊆ 𝐼) |
14 | 4, 13 | eqssd 4012 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 = 𝐵) |
15 | 14 | ex 412 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 → 𝐼 = 𝐵)) |
16 | 1, 6 | ringidcl 20279 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 1 ∈ 𝐵) |
18 | eleq2 2827 | . . 3 ⊢ (𝐼 = 𝐵 → ( 1 ∈ 𝐼 ↔ 1 ∈ 𝐵)) | |
19 | 17, 18 | syl5ibrcom 247 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 = 𝐵 → 1 ∈ 𝐼)) |
20 | 15, 19 | impbid 212 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 .rcmulr 17298 1rcur 20198 Ringcrg 20250 LIdealclidl 21233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-subg 19153 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-subrg 20586 df-lmod 20876 df-lss 20947 df-sra 21189 df-rgmod 21190 df-lidl 21235 |
This theorem is referenced by: rsp1 21264 drngnidl 21270 lidlunitel 33430 unitpidl1 33431 pridln1 33450 mxidln1 33473 ssmxidllem 33480 qsdrnglem2 33503 uzlidlring 48078 |
Copyright terms: Public domain | W3C validator |