| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidl1el | Structured version Visualization version GIF version | ||
| Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| Ref | Expression |
|---|---|
| lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| lidlcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| lidl1el.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| lidl1el | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | lidlcl.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 3 | 1, 2 | lidlss 21137 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ 𝐵) |
| 4 | 3 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
| 5 | eqid 2729 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | lidl1el.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 7 | 1, 5, 6 | ringridm 20173 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
| 8 | 7 | ad2ant2rl 749 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
| 9 | 2, 1, 5 | lidlmcl 21150 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 1 ∈ 𝐼)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
| 10 | 9 | ancom2s 650 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
| 11 | 8, 10 | eqeltrrd 2829 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → 𝑎 ∈ 𝐼) |
| 12 | 11 | expr 456 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → (𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐼)) |
| 13 | 12 | ssrdv 3943 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐵 ⊆ 𝐼) |
| 14 | 4, 13 | eqssd 3955 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 = 𝐵) |
| 15 | 14 | ex 412 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 → 𝐼 = 𝐵)) |
| 16 | 1, 6 | ringidcl 20168 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 1 ∈ 𝐵) |
| 18 | eleq2 2817 | . . 3 ⊢ (𝐼 = 𝐵 → ( 1 ∈ 𝐼 ↔ 1 ∈ 𝐵)) | |
| 19 | 17, 18 | syl5ibrcom 247 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 = 𝐵 → 1 ∈ 𝐼)) |
| 20 | 15, 19 | impbid 212 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 .rcmulr 17180 1rcur 20084 Ringcrg 20136 LIdealclidl 21131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrg 20473 df-lmod 20783 df-lss 20853 df-sra 21095 df-rgmod 21096 df-lidl 21133 |
| This theorem is referenced by: rsp1 21162 drngnidl 21168 lidlunitel 33370 unitpidl1 33371 pridln1 33390 mxidln1 33413 ssmxidllem 33420 qsdrnglem2 33443 uzlidlring 48207 |
| Copyright terms: Public domain | W3C validator |