![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidl1el | Structured version Visualization version GIF version |
Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
Ref | Expression |
---|---|
lidlcl.u | β’ π = (LIdealβπ ) |
lidlcl.b | β’ π΅ = (Baseβπ ) |
lidl1el.o | β’ 1 = (1rβπ ) |
Ref | Expression |
---|---|
lidl1el | β’ ((π β Ring β§ πΌ β π) β ( 1 β πΌ β πΌ = π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlcl.b | . . . . . 6 β’ π΅ = (Baseβπ ) | |
2 | lidlcl.u | . . . . . 6 β’ π = (LIdealβπ ) | |
3 | 1, 2 | lidlss 20833 | . . . . 5 β’ (πΌ β π β πΌ β π΅) |
4 | 3 | ad2antlr 726 | . . . 4 β’ (((π β Ring β§ πΌ β π) β§ 1 β πΌ) β πΌ β π΅) |
5 | eqid 2733 | . . . . . . . . 9 β’ (.rβπ ) = (.rβπ ) | |
6 | lidl1el.o | . . . . . . . . 9 β’ 1 = (1rβπ ) | |
7 | 1, 5, 6 | ringridm 20087 | . . . . . . . 8 β’ ((π β Ring β§ π β π΅) β (π(.rβπ ) 1 ) = π) |
8 | 7 | ad2ant2rl 748 | . . . . . . 7 β’ (((π β Ring β§ πΌ β π) β§ ( 1 β πΌ β§ π β π΅)) β (π(.rβπ ) 1 ) = π) |
9 | 2, 1, 5 | lidlmcl 20840 | . . . . . . . 8 β’ (((π β Ring β§ πΌ β π) β§ (π β π΅ β§ 1 β πΌ)) β (π(.rβπ ) 1 ) β πΌ) |
10 | 9 | ancom2s 649 | . . . . . . 7 β’ (((π β Ring β§ πΌ β π) β§ ( 1 β πΌ β§ π β π΅)) β (π(.rβπ ) 1 ) β πΌ) |
11 | 8, 10 | eqeltrrd 2835 | . . . . . 6 β’ (((π β Ring β§ πΌ β π) β§ ( 1 β πΌ β§ π β π΅)) β π β πΌ) |
12 | 11 | expr 458 | . . . . 5 β’ (((π β Ring β§ πΌ β π) β§ 1 β πΌ) β (π β π΅ β π β πΌ)) |
13 | 12 | ssrdv 3989 | . . . 4 β’ (((π β Ring β§ πΌ β π) β§ 1 β πΌ) β π΅ β πΌ) |
14 | 4, 13 | eqssd 4000 | . . 3 β’ (((π β Ring β§ πΌ β π) β§ 1 β πΌ) β πΌ = π΅) |
15 | 14 | ex 414 | . 2 β’ ((π β Ring β§ πΌ β π) β ( 1 β πΌ β πΌ = π΅)) |
16 | 1, 6 | ringidcl 20083 | . . . 4 β’ (π β Ring β 1 β π΅) |
17 | 16 | adantr 482 | . . 3 β’ ((π β Ring β§ πΌ β π) β 1 β π΅) |
18 | eleq2 2823 | . . 3 β’ (πΌ = π΅ β ( 1 β πΌ β 1 β π΅)) | |
19 | 17, 18 | syl5ibrcom 246 | . 2 β’ ((π β Ring β§ πΌ β π) β (πΌ = π΅ β 1 β πΌ)) |
20 | 15, 19 | impbid 211 | 1 β’ ((π β Ring β§ πΌ β π) β ( 1 β πΌ β πΌ = π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3949 βcfv 6544 (class class class)co 7409 Basecbs 17144 .rcmulr 17198 1rcur 20004 Ringcrg 20056 LIdealclidl 20783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-mgp 19988 df-ur 20005 df-ring 20058 df-subrg 20317 df-lmod 20473 df-lss 20543 df-sra 20785 df-rgmod 20786 df-lidl 20787 |
This theorem is referenced by: rsp1 20849 drngnidl 20854 lidlunitel 32541 unitpidl1 32542 pridln1 32561 mxidln1 32582 ssmxidllem 32589 qsdrnglem2 32610 uzlidlring 46827 |
Copyright terms: Public domain | W3C validator |