| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidl1el | Structured version Visualization version GIF version | ||
| Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| Ref | Expression |
|---|---|
| lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| lidlcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| lidl1el.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| lidl1el | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | lidlcl.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 3 | 1, 2 | lidlss 21142 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ 𝐵) |
| 4 | 3 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
| 5 | eqid 2730 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | lidl1el.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 7 | 1, 5, 6 | ringridm 20181 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
| 8 | 7 | ad2ant2rl 749 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
| 9 | 2, 1, 5 | lidlmcl 21155 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 1 ∈ 𝐼)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
| 10 | 9 | ancom2s 650 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
| 11 | 8, 10 | eqeltrrd 2830 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → 𝑎 ∈ 𝐼) |
| 12 | 11 | expr 456 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → (𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐼)) |
| 13 | 12 | ssrdv 3938 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐵 ⊆ 𝐼) |
| 14 | 4, 13 | eqssd 3950 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 = 𝐵) |
| 15 | 14 | ex 412 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 → 𝐼 = 𝐵)) |
| 16 | 1, 6 | ringidcl 20176 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 1 ∈ 𝐵) |
| 18 | eleq2 2818 | . . 3 ⊢ (𝐼 = 𝐵 → ( 1 ∈ 𝐼 ↔ 1 ∈ 𝐵)) | |
| 19 | 17, 18 | syl5ibrcom 247 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 = 𝐵 → 1 ∈ 𝐼)) |
| 20 | 15, 19 | impbid 212 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 .rcmulr 17154 1rcur 20092 Ringcrg 20144 LIdealclidl 21136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-subrg 20478 df-lmod 20788 df-lss 20858 df-sra 21100 df-rgmod 21101 df-lidl 21138 |
| This theorem is referenced by: rsp1 21167 drngnidl 21173 lidlunitel 33378 unitpidl1 33379 pridln1 33398 mxidln1 33421 ssmxidllem 33428 qsdrnglem2 33451 uzlidlring 48245 |
| Copyright terms: Public domain | W3C validator |