| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidl1el | Structured version Visualization version GIF version | ||
| Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| Ref | Expression |
|---|---|
| lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| lidlcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| lidl1el.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| lidl1el | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | lidlcl.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 3 | 1, 2 | lidlss 21155 | . . . . 5 ⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ 𝐵) |
| 4 | 3 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
| 5 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | lidl1el.o | . . . . . . . . 9 ⊢ 1 = (1r‘𝑅) | |
| 7 | 1, 5, 6 | ringridm 20194 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
| 8 | 7 | ad2ant2rl 749 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) = 𝑎) |
| 9 | 2, 1, 5 | lidlmcl 21168 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 1 ∈ 𝐼)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
| 10 | 9 | ancom2s 650 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → (𝑎(.r‘𝑅) 1 ) ∈ 𝐼) |
| 11 | 8, 10 | eqeltrrd 2832 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ( 1 ∈ 𝐼 ∧ 𝑎 ∈ 𝐵)) → 𝑎 ∈ 𝐼) |
| 12 | 11 | expr 456 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → (𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐼)) |
| 13 | 12 | ssrdv 3935 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐵 ⊆ 𝐼) |
| 14 | 4, 13 | eqssd 3947 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ 1 ∈ 𝐼) → 𝐼 = 𝐵) |
| 15 | 14 | ex 412 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 → 𝐼 = 𝐵)) |
| 16 | 1, 6 | ringidcl 20189 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 1 ∈ 𝐵) |
| 18 | eleq2 2820 | . . 3 ⊢ (𝐼 = 𝐵 → ( 1 ∈ 𝐼 ↔ 1 ∈ 𝐵)) | |
| 19 | 17, 18 | syl5ibrcom 247 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 = 𝐵 → 1 ∈ 𝐼)) |
| 20 | 15, 19 | impbid 212 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ( 1 ∈ 𝐼 ↔ 𝐼 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 .rcmulr 17168 1rcur 20105 Ringcrg 20157 LIdealclidl 21149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-subrg 20491 df-lmod 20801 df-lss 20871 df-sra 21113 df-rgmod 21114 df-lidl 21151 |
| This theorem is referenced by: rsp1 21180 drngnidl 21186 lidlunitel 33395 unitpidl1 33396 pridln1 33415 mxidln1 33438 ssmxidllem 33445 qsdrnglem2 33468 uzlidlring 48340 |
| Copyright terms: Public domain | W3C validator |