MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub Structured version   Visualization version   GIF version

Theorem ramub 16950
Description: The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
rami.c 𝐢 = (π‘Ž ∈ V, 𝑖 ∈ β„•0 ↦ {𝑏 ∈ 𝒫 π‘Ž ∣ (β™―β€˜π‘) = 𝑖})
rami.m (πœ‘ β†’ 𝑀 ∈ β„•0)
rami.r (πœ‘ β†’ 𝑅 ∈ 𝑉)
rami.f (πœ‘ β†’ 𝐹:π‘…βŸΆβ„•0)
ramub.n (πœ‘ β†’ 𝑁 ∈ β„•0)
ramub.i ((πœ‘ ∧ (𝑁 ≀ (β™―β€˜π‘ ) ∧ 𝑓:(𝑠𝐢𝑀)βŸΆπ‘…)) β†’ βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))
Assertion
Ref Expression
ramub (πœ‘ β†’ (𝑀 Ramsey 𝐹) ≀ 𝑁)
Distinct variable groups:   𝑓,𝑐,𝑠,π‘₯,𝐢   πœ‘,𝑐,𝑓,𝑠,π‘₯   𝐹,𝑐,𝑓,𝑠,π‘₯   π‘Ž,𝑏,𝑐,𝑓,𝑖,𝑠,π‘₯,𝑀   𝑅,𝑐,𝑓,𝑠,π‘₯   𝑁,π‘Ž,𝑐,𝑓,𝑖,𝑠,π‘₯   𝑉,𝑐,𝑓,𝑠,π‘₯
Allowed substitution hints:   πœ‘(𝑖,π‘Ž,𝑏)   𝐢(𝑖,π‘Ž,𝑏)   𝑅(𝑖,π‘Ž,𝑏)   𝐹(𝑖,π‘Ž,𝑏)   𝑁(𝑏)   𝑉(𝑖,π‘Ž,𝑏)

Proof of Theorem ramub
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rami.m . 2 (πœ‘ β†’ 𝑀 ∈ β„•0)
2 rami.r . 2 (πœ‘ β†’ 𝑅 ∈ 𝑉)
3 rami.f . 2 (πœ‘ β†’ 𝐹:π‘…βŸΆβ„•0)
4 breq1 5151 . . . . 5 (𝑛 = 𝑁 β†’ (𝑛 ≀ (β™―β€˜π‘ ) ↔ 𝑁 ≀ (β™―β€˜π‘ )))
54imbi1d 341 . . . 4 (𝑛 = 𝑁 β†’ ((𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))) ↔ (𝑁 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))))
65albidv 1923 . . 3 (𝑛 = 𝑁 β†’ (βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))) ↔ βˆ€π‘ (𝑁 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))))
7 ramub.n . . 3 (πœ‘ β†’ 𝑁 ∈ β„•0)
8 elmapi 8845 . . . . . 6 (𝑓 ∈ (𝑅 ↑m (𝑠𝐢𝑀)) β†’ 𝑓:(𝑠𝐢𝑀)βŸΆπ‘…)
9 ramub.i . . . . . . . 8 ((πœ‘ ∧ (𝑁 ≀ (β™―β€˜π‘ ) ∧ 𝑓:(𝑠𝐢𝑀)βŸΆπ‘…)) β†’ βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))
109ancom2s 648 . . . . . . 7 ((πœ‘ ∧ (𝑓:(𝑠𝐢𝑀)βŸΆπ‘… ∧ 𝑁 ≀ (β™―β€˜π‘ ))) β†’ βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))
1110expr 457 . . . . . 6 ((πœ‘ ∧ 𝑓:(𝑠𝐢𝑀)βŸΆπ‘…) β†’ (𝑁 ≀ (β™―β€˜π‘ ) β†’ βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))))
128, 11sylan2 593 . . . . 5 ((πœ‘ ∧ 𝑓 ∈ (𝑅 ↑m (𝑠𝐢𝑀))) β†’ (𝑁 ≀ (β™―β€˜π‘ ) β†’ βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))))
1312ralrimdva 3154 . . . 4 (πœ‘ β†’ (𝑁 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))))
1413alrimiv 1930 . . 3 (πœ‘ β†’ βˆ€π‘ (𝑁 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐}))))
156, 7, 14elrabd 3685 . 2 (πœ‘ β†’ 𝑁 ∈ {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))})
16 rami.c . . 3 𝐢 = (π‘Ž ∈ V, 𝑖 ∈ β„•0 ↦ {𝑏 ∈ 𝒫 π‘Ž ∣ (β™―β€˜π‘) = 𝑖})
17 eqid 2732 . . 3 {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))} = {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))}
1816, 17ramtub 16949 . 2 (((𝑀 ∈ β„•0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹:π‘…βŸΆβ„•0) ∧ 𝑁 ∈ {𝑛 ∈ β„•0 ∣ βˆ€π‘ (𝑛 ≀ (β™―β€˜π‘ ) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (𝑠𝐢𝑀))βˆƒπ‘ ∈ 𝑅 βˆƒπ‘₯ ∈ 𝒫 𝑠((πΉβ€˜π‘) ≀ (β™―β€˜π‘₯) ∧ (π‘₯𝐢𝑀) βŠ† (◑𝑓 β€œ {𝑐})))}) β†’ (𝑀 Ramsey 𝐹) ≀ 𝑁)
191, 2, 3, 15, 18syl31anc 1373 1 (πœ‘ β†’ (𝑀 Ramsey 𝐹) ≀ 𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3948  π’« cpw 4602  {csn 4628   class class class wbr 5148  β—‘ccnv 5675   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413   ↑m cmap 8822   ≀ cle 11253  β„•0cn0 12476  β™―chash 14294   Ramsey cram 16936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-ram 16938
This theorem is referenced by:  ramub2  16951  0ram  16957  ram0  16959  ramz2  16961
  Copyright terms: Public domain W3C validator