| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumcom3 | Structured version Visualization version GIF version | ||
| Description: A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
| Ref | Expression |
|---|---|
| gsumcom3.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumcom3.z | ⊢ 0 = (0g‘𝐺) |
| gsumcom3.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumcom3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumcom3.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| gsumcom3.f | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) |
| gsumcom3.u | ⊢ (𝜑 → 𝑈 ∈ Fin) |
| gsumcom3.n | ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) |
| Ref | Expression |
|---|---|
| gsumcom3 | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcom3.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumcom3.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumcom3.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumcom3.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumcom3.r | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | gsumcom3.f | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) | |
| 7 | gsumcom3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
| 8 | gsumcom3.n | . . 3 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | gsumcom 19890 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋))) |
| 10 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
| 11 | 1, 2, 3, 4, 10, 6, 7, 8 | gsum2d2 19887 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))))) |
| 12 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐴 ∈ 𝑉) |
| 13 | 6 | ancom2s 650 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
| 14 | cnvfi 9085 | . . . 4 ⊢ (𝑈 ∈ Fin → ◡𝑈 ∈ Fin) | |
| 15 | 7, 14 | syl 17 | . . 3 ⊢ (𝜑 → ◡𝑈 ∈ Fin) |
| 16 | ancom 460 | . . . . 5 ⊢ ((𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴) ↔ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) | |
| 17 | vex 3440 | . . . . . . 7 ⊢ 𝑘 ∈ V | |
| 18 | vex 3440 | . . . . . . 7 ⊢ 𝑗 ∈ V | |
| 19 | 17, 18 | brcnv 5822 | . . . . . 6 ⊢ (𝑘◡𝑈𝑗 ↔ 𝑗𝑈𝑘) |
| 20 | 19 | notbii 320 | . . . . 5 ⊢ (¬ 𝑘◡𝑈𝑗 ↔ ¬ 𝑗𝑈𝑘) |
| 21 | 16, 20 | anbi12i 628 | . . . 4 ⊢ (((𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑘◡𝑈𝑗) ↔ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) |
| 22 | 21, 8 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ ((𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑘◡𝑈𝑗)) → 𝑋 = 0 ) |
| 23 | 1, 2, 3, 5, 12, 13, 15, 22 | gsum2d2 19887 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
| 24 | 9, 11, 23 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ↦ cmpt 5172 ◡ccnv 5615 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Fincfn 8869 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 |
| This theorem is referenced by: gsumcom3fi 19892 gsumxp2 19893 fldextrspunlsplem 33684 |
| Copyright terms: Public domain | W3C validator |