![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumcom3 | Structured version Visualization version GIF version |
Description: A commutative law for finitely supported iterated sums. (Contributed by Stefan O'Rear, 2-Nov-2015.) |
Ref | Expression |
---|---|
gsumcom3.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumcom3.z | ⊢ 0 = (0g‘𝐺) |
gsumcom3.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumcom3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumcom3.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
gsumcom3.f | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) |
gsumcom3.u | ⊢ (𝜑 → 𝑈 ∈ Fin) |
gsumcom3.n | ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) |
Ref | Expression |
---|---|
gsumcom3 | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumcom3.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumcom3.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumcom3.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumcom3.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | gsumcom3.r | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
6 | gsumcom3.f | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) | |
7 | gsumcom3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
8 | gsumcom3.n | . . 3 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | gsumcom 19762 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋))) |
10 | 5 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
11 | 1, 2, 3, 4, 10, 6, 7, 8 | gsum2d2 19759 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))))) |
12 | 4 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐴 ∈ 𝑉) |
13 | 6 | ancom2s 649 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
14 | cnvfi 9130 | . . . 4 ⊢ (𝑈 ∈ Fin → ◡𝑈 ∈ Fin) | |
15 | 7, 14 | syl 17 | . . 3 ⊢ (𝜑 → ◡𝑈 ∈ Fin) |
16 | ancom 462 | . . . . 5 ⊢ ((𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴) ↔ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) | |
17 | vex 3451 | . . . . . . 7 ⊢ 𝑘 ∈ V | |
18 | vex 3451 | . . . . . . 7 ⊢ 𝑗 ∈ V | |
19 | 17, 18 | brcnv 5842 | . . . . . 6 ⊢ (𝑘◡𝑈𝑗 ↔ 𝑗𝑈𝑘) |
20 | 19 | notbii 320 | . . . . 5 ⊢ (¬ 𝑘◡𝑈𝑗 ↔ ¬ 𝑗𝑈𝑘) |
21 | 16, 20 | anbi12i 628 | . . . 4 ⊢ (((𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑘◡𝑈𝑗) ↔ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) |
22 | 21, 8 | sylan2b 595 | . . 3 ⊢ ((𝜑 ∧ ((𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴) ∧ ¬ 𝑘◡𝑈𝑗)) → 𝑋 = 0 ) |
23 | 1, 2, 3, 5, 12, 13, 15, 22 | gsum2d2 19759 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
24 | 9, 11, 23 | 3eqtr3d 2781 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝐺 Σg (𝑗 ∈ 𝐴 ↦ 𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5109 ↦ cmpt 5192 ◡ccnv 5636 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 Fincfn 8889 Basecbs 17091 0gc0g 17329 Σg cgsu 17330 CMndccmn 19570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-oi 9454 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-fzo 13577 df-seq 13916 df-hash 14240 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-0g 17331 df-gsum 17332 df-mre 17474 df-mrc 17475 df-acs 17477 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-submnd 18610 df-mulg 18881 df-cntz 19105 df-cmn 19572 |
This theorem is referenced by: gsumcom3fi 19764 gsumxp2 19765 |
Copyright terms: Public domain | W3C validator |