Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcomN | Structured version Visualization version GIF version |
Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhvaddcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhvaddcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhvaddcl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhvaddcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhvaddcl.d | ⊢ 𝐷 = (Scalar‘𝑈) |
dvhvaddcl.p | ⊢ ⨣ = (+g‘𝐷) |
dvhvaddcl.a | ⊢ + = (+g‘𝑈) |
Ref | Expression |
---|---|
dvhvaddcomN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | xp1st 7906 | . . . . 5 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (1st ‘𝐹) ∈ 𝑇) | |
3 | 2 | ad2antrl 725 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐹) ∈ 𝑇) |
4 | xp1st 7906 | . . . . 5 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (1st ‘𝐺) ∈ 𝑇) | |
5 | 4 | ad2antll 726 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐺) ∈ 𝑇) |
6 | dvhvaddcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dvhvaddcl.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 6, 7 | ltrncom 38964 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (1st ‘𝐹) ∈ 𝑇 ∧ (1st ‘𝐺) ∈ 𝑇) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
9 | 1, 3, 5, 8 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
10 | xp2nd 7907 | . . . . . 6 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (2nd ‘𝐹) ∈ 𝐸) | |
11 | xp2nd 7907 | . . . . . 6 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (2nd ‘𝐺) ∈ 𝐸) | |
12 | 10, 11 | anim12i 613 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) |
13 | dvhvaddcl.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
14 | eqid 2737 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
15 | 6, 7, 13, 14 | tendoplcom 39008 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
16 | 15 | 3expb 1119 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
17 | 12, 16 | sylan2 593 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
18 | dvhvaddcl.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
19 | dvhvaddcl.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑈) | |
20 | dvhvaddcl.p | . . . . . . 7 ⊢ ⨣ = (+g‘𝐷) | |
21 | 6, 7, 13, 18, 19, 14, 20 | dvhfplusr 39310 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
22 | 21 | adantr 481 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
23 | 22 | oveqd 7330 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺))) |
24 | 22 | oveqd 7330 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐺) ⨣ (2nd ‘𝐹)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
25 | 17, 23, 24 | 3eqtr4d 2787 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))) |
26 | 9, 25 | opeq12d 4821 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉 = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
27 | dvhvaddcl.a | . . 3 ⊢ + = (+g‘𝑈) | |
28 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 39318 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
29 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 39318 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
30 | 29 | ancom2s 647 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
31 | 26, 28, 30 | 3eqtr4d 2787 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4575 ↦ cmpt 5168 × cxp 5603 ∘ ccom 5609 ‘cfv 6463 (class class class)co 7313 ∈ cmpo 7315 1st c1st 7872 2nd c2nd 7873 +gcplusg 17029 Scalarcsca 17032 HLchlt 37576 LHypclh 38210 LTrncltrn 38327 TEndoctendo 38978 DVecHcdvh 39304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-riotaBAD 37179 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-undef 8134 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-struct 16915 df-slot 16950 df-ndx 16962 df-base 16980 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-proset 18080 df-poset 18098 df-plt 18115 df-lub 18131 df-glb 18132 df-join 18133 df-meet 18134 df-p0 18210 df-p1 18211 df-lat 18217 df-clat 18284 df-oposet 37402 df-ol 37404 df-oml 37405 df-covers 37492 df-ats 37493 df-atl 37524 df-cvlat 37548 df-hlat 37577 df-llines 37724 df-lplanes 37725 df-lvols 37726 df-lines 37727 df-psubsp 37729 df-pmap 37730 df-padd 38022 df-lhyp 38214 df-laut 38215 df-ldil 38330 df-ltrn 38331 df-trl 38385 df-tendo 38981 df-edring 38983 df-dvech 39305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |