Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcomN | Structured version Visualization version GIF version |
Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhvaddcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhvaddcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhvaddcl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhvaddcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhvaddcl.d | ⊢ 𝐷 = (Scalar‘𝑈) |
dvhvaddcl.p | ⊢ ⨣ = (+g‘𝐷) |
dvhvaddcl.a | ⊢ + = (+g‘𝑈) |
Ref | Expression |
---|---|
dvhvaddcomN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | xp1st 7836 | . . . . 5 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (1st ‘𝐹) ∈ 𝑇) | |
3 | 2 | ad2antrl 724 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐹) ∈ 𝑇) |
4 | xp1st 7836 | . . . . 5 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (1st ‘𝐺) ∈ 𝑇) | |
5 | 4 | ad2antll 725 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐺) ∈ 𝑇) |
6 | dvhvaddcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dvhvaddcl.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 6, 7 | ltrncom 38679 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (1st ‘𝐹) ∈ 𝑇 ∧ (1st ‘𝐺) ∈ 𝑇) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
9 | 1, 3, 5, 8 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
10 | xp2nd 7837 | . . . . . 6 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (2nd ‘𝐹) ∈ 𝐸) | |
11 | xp2nd 7837 | . . . . . 6 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (2nd ‘𝐺) ∈ 𝐸) | |
12 | 10, 11 | anim12i 612 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) |
13 | dvhvaddcl.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
14 | eqid 2738 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
15 | 6, 7, 13, 14 | tendoplcom 38723 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
16 | 15 | 3expb 1118 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
17 | 12, 16 | sylan2 592 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
18 | dvhvaddcl.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
19 | dvhvaddcl.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑈) | |
20 | dvhvaddcl.p | . . . . . . 7 ⊢ ⨣ = (+g‘𝐷) | |
21 | 6, 7, 13, 18, 19, 14, 20 | dvhfplusr 39025 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
22 | 21 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
23 | 22 | oveqd 7272 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺))) |
24 | 22 | oveqd 7272 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐺) ⨣ (2nd ‘𝐹)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
25 | 17, 23, 24 | 3eqtr4d 2788 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))) |
26 | 9, 25 | opeq12d 4809 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉 = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
27 | dvhvaddcl.a | . . 3 ⊢ + = (+g‘𝑈) | |
28 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 39033 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
29 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 39033 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
30 | 29 | ancom2s 646 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
31 | 26, 28, 30 | 3eqtr4d 2788 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 +gcplusg 16888 Scalarcsca 16891 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 TEndoctendo 38693 DVecHcdvh 39019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tendo 38696 df-edring 38698 df-dvech 39020 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |