| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcomN | Structured version Visualization version GIF version | ||
| Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvhvaddcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvhvaddcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvhvaddcl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvhvaddcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvhvaddcl.d | ⊢ 𝐷 = (Scalar‘𝑈) |
| dvhvaddcl.p | ⊢ ⨣ = (+g‘𝐷) |
| dvhvaddcl.a | ⊢ + = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| dvhvaddcomN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | xp1st 8003 | . . . . 5 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (1st ‘𝐹) ∈ 𝑇) | |
| 3 | 2 | ad2antrl 728 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐹) ∈ 𝑇) |
| 4 | xp1st 8003 | . . . . 5 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (1st ‘𝐺) ∈ 𝑇) | |
| 5 | 4 | ad2antll 729 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐺) ∈ 𝑇) |
| 6 | dvhvaddcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | dvhvaddcl.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | 6, 7 | ltrncom 40739 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (1st ‘𝐹) ∈ 𝑇 ∧ (1st ‘𝐺) ∈ 𝑇) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
| 9 | 1, 3, 5, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
| 10 | xp2nd 8004 | . . . . . 6 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (2nd ‘𝐹) ∈ 𝐸) | |
| 11 | xp2nd 8004 | . . . . . 6 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (2nd ‘𝐺) ∈ 𝐸) | |
| 12 | 10, 11 | anim12i 613 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) |
| 13 | dvhvaddcl.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 14 | eqid 2730 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
| 15 | 6, 7, 13, 14 | tendoplcom 40783 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 16 | 15 | 3expb 1120 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 17 | 12, 16 | sylan2 593 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 18 | dvhvaddcl.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 19 | dvhvaddcl.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑈) | |
| 20 | dvhvaddcl.p | . . . . . . 7 ⊢ ⨣ = (+g‘𝐷) | |
| 21 | 6, 7, 13, 18, 19, 14, 20 | dvhfplusr 41085 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
| 23 | 22 | oveqd 7407 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺))) |
| 24 | 22 | oveqd 7407 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐺) ⨣ (2nd ‘𝐹)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 25 | 17, 23, 24 | 3eqtr4d 2775 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))) |
| 26 | 9, 25 | opeq12d 4848 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉 = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
| 27 | dvhvaddcl.a | . . 3 ⊢ + = (+g‘𝑈) | |
| 28 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 41093 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
| 29 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 41093 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
| 30 | 29 | ancom2s 650 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
| 31 | 26, 28, 30 | 3eqtr4d 2775 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 ↦ cmpt 5191 × cxp 5639 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1st c1st 7969 2nd c2nd 7970 +gcplusg 17227 Scalarcsca 17230 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 TEndoctendo 40753 DVecHcdvh 41079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tendo 40756 df-edring 40758 df-dvech 41080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |