| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcomN | Structured version Visualization version GIF version | ||
| Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvhvaddcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvhvaddcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvhvaddcl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvhvaddcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvhvaddcl.d | ⊢ 𝐷 = (Scalar‘𝑈) |
| dvhvaddcl.p | ⊢ ⨣ = (+g‘𝐷) |
| dvhvaddcl.a | ⊢ + = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| dvhvaddcomN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | xp1st 7979 | . . . . 5 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (1st ‘𝐹) ∈ 𝑇) | |
| 3 | 2 | ad2antrl 728 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐹) ∈ 𝑇) |
| 4 | xp1st 7979 | . . . . 5 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (1st ‘𝐺) ∈ 𝑇) | |
| 5 | 4 | ad2antll 729 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐺) ∈ 𝑇) |
| 6 | dvhvaddcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | dvhvaddcl.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | 6, 7 | ltrncom 40725 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (1st ‘𝐹) ∈ 𝑇 ∧ (1st ‘𝐺) ∈ 𝑇) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
| 9 | 1, 3, 5, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
| 10 | xp2nd 7980 | . . . . . 6 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (2nd ‘𝐹) ∈ 𝐸) | |
| 11 | xp2nd 7980 | . . . . . 6 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (2nd ‘𝐺) ∈ 𝐸) | |
| 12 | 10, 11 | anim12i 613 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) |
| 13 | dvhvaddcl.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
| 15 | 6, 7, 13, 14 | tendoplcom 40769 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 16 | 15 | 3expb 1120 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 17 | 12, 16 | sylan2 593 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 18 | dvhvaddcl.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 19 | dvhvaddcl.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑈) | |
| 20 | dvhvaddcl.p | . . . . . . 7 ⊢ ⨣ = (+g‘𝐷) | |
| 21 | 6, 7, 13, 18, 19, 14, 20 | dvhfplusr 41071 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
| 23 | 22 | oveqd 7386 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺))) |
| 24 | 22 | oveqd 7386 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐺) ⨣ (2nd ‘𝐹)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
| 25 | 17, 23, 24 | 3eqtr4d 2774 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))) |
| 26 | 9, 25 | opeq12d 4841 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉 = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
| 27 | dvhvaddcl.a | . . 3 ⊢ + = (+g‘𝑈) | |
| 28 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 41079 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
| 29 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 41079 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
| 30 | 29 | ancom2s 650 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
| 31 | 26, 28, 30 | 3eqtr4d 2774 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 ↦ cmpt 5183 × cxp 5629 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 +gcplusg 17196 Scalarcsca 17199 HLchlt 39336 LHypclh 39971 LTrncltrn 40088 TEndoctendo 40739 DVecHcdvh 41065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-llines 39485 df-lplanes 39486 df-lvols 39487 df-lines 39488 df-psubsp 39490 df-pmap 39491 df-padd 39783 df-lhyp 39975 df-laut 39976 df-ldil 40091 df-ltrn 40092 df-trl 40146 df-tendo 40742 df-edring 40744 df-dvech 41066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |