![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvhvaddcomN | Structured version Visualization version GIF version |
Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvhvaddcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvhvaddcl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvhvaddcl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvhvaddcl.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvhvaddcl.d | ⊢ 𝐷 = (Scalar‘𝑈) |
dvhvaddcl.p | ⊢ ⨣ = (+g‘𝐷) |
dvhvaddcl.a | ⊢ + = (+g‘𝑈) |
Ref | Expression |
---|---|
dvhvaddcomN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | xp1st 7461 | . . . . 5 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (1st ‘𝐹) ∈ 𝑇) | |
3 | 2 | ad2antrl 721 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐹) ∈ 𝑇) |
4 | xp1st 7461 | . . . . 5 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (1st ‘𝐺) ∈ 𝑇) | |
5 | 4 | ad2antll 722 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st ‘𝐺) ∈ 𝑇) |
6 | dvhvaddcl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | dvhvaddcl.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 6, 7 | ltrncom 36814 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (1st ‘𝐹) ∈ 𝑇 ∧ (1st ‘𝐺) ∈ 𝑇) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
9 | 1, 3, 5, 8 | syl3anc 1496 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((1st ‘𝐹) ∘ (1st ‘𝐺)) = ((1st ‘𝐺) ∘ (1st ‘𝐹))) |
10 | xp2nd 7462 | . . . . . 6 ⊢ (𝐹 ∈ (𝑇 × 𝐸) → (2nd ‘𝐹) ∈ 𝐸) | |
11 | xp2nd 7462 | . . . . . 6 ⊢ (𝐺 ∈ (𝑇 × 𝐸) → (2nd ‘𝐺) ∈ 𝐸) | |
12 | 10, 11 | anim12i 608 | . . . . 5 ⊢ ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) |
13 | dvhvaddcl.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
14 | eqid 2826 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐)))) | |
15 | 6, 7, 13, 14 | tendoplcom 36858 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
16 | 15 | 3expb 1155 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((2nd ‘𝐹) ∈ 𝐸 ∧ (2nd ‘𝐺) ∈ 𝐸)) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
17 | 12, 16 | sylan2 588 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
18 | dvhvaddcl.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
19 | dvhvaddcl.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑈) | |
20 | dvhvaddcl.p | . . . . . . 7 ⊢ ⨣ = (+g‘𝐷) | |
21 | 6, 7, 13, 18, 19, 14, 20 | dvhfplusr 37160 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
22 | 21 | adantr 474 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ⨣ = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))) |
23 | 22 | oveqd 6923 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐹)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐺))) |
24 | 22 | oveqd 6923 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐺) ⨣ (2nd ‘𝐹)) = ((2nd ‘𝐺)(𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑐 ∈ 𝑇 ↦ ((𝑎‘𝑐) ∘ (𝑏‘𝑐))))(2nd ‘𝐹))) |
25 | 17, 23, 24 | 3eqtr4d 2872 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd ‘𝐹) ⨣ (2nd ‘𝐺)) = ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))) |
26 | 9, 25 | opeq12d 4632 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉 = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
27 | dvhvaddcl.a | . . 3 ⊢ + = (+g‘𝑈) | |
28 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 37168 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = 〈((1st ‘𝐹) ∘ (1st ‘𝐺)), ((2nd ‘𝐹) ⨣ (2nd ‘𝐺))〉) |
29 | 6, 7, 13, 18, 19, 27, 20 | dvhvadd 37168 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
30 | 29 | ancom2s 642 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = 〈((1st ‘𝐺) ∘ (1st ‘𝐹)), ((2nd ‘𝐺) ⨣ (2nd ‘𝐹))〉) |
31 | 26, 28, 30 | 3eqtr4d 2872 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 〈cop 4404 ↦ cmpt 4953 × cxp 5341 ∘ ccom 5347 ‘cfv 6124 (class class class)co 6906 ↦ cmpt2 6908 1st c1st 7427 2nd c2nd 7428 +gcplusg 16306 Scalarcsca 16309 HLchlt 35426 LHypclh 36060 LTrncltrn 36177 TEndoctendo 36828 DVecHcdvh 37154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-riotaBAD 35029 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-undef 7665 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-proset 17282 df-poset 17300 df-plt 17312 df-lub 17328 df-glb 17329 df-join 17330 df-meet 17331 df-p0 17393 df-p1 17394 df-lat 17400 df-clat 17462 df-oposet 35252 df-ol 35254 df-oml 35255 df-covers 35342 df-ats 35343 df-atl 35374 df-cvlat 35398 df-hlat 35427 df-llines 35574 df-lplanes 35575 df-lvols 35576 df-lines 35577 df-psubsp 35579 df-pmap 35580 df-padd 35872 df-lhyp 36064 df-laut 36065 df-ldil 36180 df-ltrn 36181 df-trl 36235 df-tendo 36831 df-edring 36833 df-dvech 37155 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |