Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddcomN Structured version   Visualization version   GIF version

Theorem dvhvaddcomN 41120
Description: Commutativity of vector sum. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvhvaddcl.h 𝐻 = (LHyp‘𝐾)
dvhvaddcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvaddcl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvaddcl.d 𝐷 = (Scalar‘𝑈)
dvhvaddcl.p = (+g𝐷)
dvhvaddcl.a + = (+g𝑈)
Assertion
Ref Expression
dvhvaddcomN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹))

Proof of Theorem dvhvaddcomN
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 xp1st 8025 . . . . 5 (𝐹 ∈ (𝑇 × 𝐸) → (1st𝐹) ∈ 𝑇)
32ad2antrl 728 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st𝐹) ∈ 𝑇)
4 xp1st 8025 . . . . 5 (𝐺 ∈ (𝑇 × 𝐸) → (1st𝐺) ∈ 𝑇)
54ad2antll 729 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st𝐺) ∈ 𝑇)
6 dvhvaddcl.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 dvhvaddcl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
86, 7ltrncom 40762 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝐹) ∈ 𝑇 ∧ (1st𝐺) ∈ 𝑇) → ((1st𝐹) ∘ (1st𝐺)) = ((1st𝐺) ∘ (1st𝐹)))
91, 3, 5, 8syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((1st𝐹) ∘ (1st𝐺)) = ((1st𝐺) ∘ (1st𝐹)))
10 xp2nd 8026 . . . . . 6 (𝐹 ∈ (𝑇 × 𝐸) → (2nd𝐹) ∈ 𝐸)
11 xp2nd 8026 . . . . . 6 (𝐺 ∈ (𝑇 × 𝐸) → (2nd𝐺) ∈ 𝐸)
1210, 11anim12i 613 . . . . 5 ((𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸)) → ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸))
13 dvhvaddcl.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
14 eqid 2736 . . . . . . 7 (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐)))) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
156, 7, 13, 14tendoplcom 40806 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸) → ((2nd𝐹)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐺)) = ((2nd𝐺)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐹)))
16153expb 1120 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸)) → ((2nd𝐹)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐺)) = ((2nd𝐺)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐹)))
1712, 16sylan2 593 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd𝐹)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐺)) = ((2nd𝐺)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐹)))
18 dvhvaddcl.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
19 dvhvaddcl.d . . . . . . 7 𝐷 = (Scalar‘𝑈)
20 dvhvaddcl.p . . . . . . 7 = (+g𝐷)
216, 7, 13, 18, 19, 14, 20dvhfplusr 41108 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐)))))
2221adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐)))))
2322oveqd 7427 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd𝐺)) = ((2nd𝐹)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐺)))
2422oveqd 7427 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd𝐺) (2nd𝐹)) = ((2nd𝐺)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐹)))
2517, 23, 243eqtr4d 2781 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd𝐺)) = ((2nd𝐺) (2nd𝐹)))
269, 25opeq12d 4862 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩ = ⟨((1st𝐺) ∘ (1st𝐹)), ((2nd𝐺) (2nd𝐹))⟩)
27 dvhvaddcl.a . . 3 + = (+g𝑈)
286, 7, 13, 18, 19, 27, 20dvhvadd 41116 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
296, 7, 13, 18, 19, 27, 20dvhvadd 41116 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺 ∈ (𝑇 × 𝐸) ∧ 𝐹 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), ((2nd𝐺) (2nd𝐹))⟩)
3029ancom2s 650 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐺 + 𝐹) = ⟨((1st𝐺) ∘ (1st𝐹)), ((2nd𝐺) (2nd𝐹))⟩)
3126, 28, 303eqtr4d 2781 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = (𝐺 + 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4612  cmpt 5206   × cxp 5657  ccom 5663  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  +gcplusg 17276  Scalarcsca 17279  HLchlt 39373  LHypclh 40008  LTrncltrn 40125  TEndoctendo 40776  DVecHcdvh 41102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-undef 8277  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183  df-tendo 40779  df-edring 40781  df-dvech 41103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator