| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocborel | Structured version Visualization version GIF version | ||
| Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| iocborel.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| iocborel.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| iocborel.t | ⊢ 𝐽 = (topGen‘ran (,)) |
| iocborel.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| iocborel | ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocborel.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | iocborel.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 3 | 1, 2 | iooiinioc 45575 | . . 3 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) = (𝐴(,]𝐶)) |
| 4 | 3 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝐴(,]𝐶) = ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛)))) |
| 5 | iocborel.t | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 6 | iocborel.b | . . . . . . 7 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 7 | 5, 6 | bor1sal 46372 | . . . . . 6 ⊢ 𝐵 ∈ SAlg |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐵 ∈ SAlg) |
| 9 | nnct 13880 | . . . . . 6 ⊢ ℕ ≼ ω | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≼ ω) |
| 11 | nnn0 45395 | . . . . . 6 ⊢ ℕ ≠ ∅ | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≠ ∅) |
| 13 | 5, 6 | iooborel 46368 | . . . . . 6 ⊢ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 15 | 8, 10, 12, 14 | saliincl 46344 | . . . 4 ⊢ (⊤ → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 16 | 15 | mptru 1548 | . . 3 ⊢ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 18 | 4, 17 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2110 ≠ wne 2926 ∅c0 4281 ∩ ciin 4940 class class class wbr 5089 ran crn 5615 ‘cfv 6477 (class class class)co 7341 ωcom 7791 ≼ cdom 8862 ℝcr 10997 1c1 10999 + caddc 11001 ℝ*cxr 11137 / cdiv 11766 ℕcn 12117 (,)cioo 13237 (,]cioc 13238 topGenctg 17333 SAlgcsalg 46325 SalGencsalgen 46329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-card 9824 df-acn 9827 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-ioo 13241 df-ioc 13242 df-fl 13688 df-topgen 17339 df-top 22802 df-bases 22854 df-salg 46326 df-salgen 46330 |
| This theorem is referenced by: incsmflem 46758 decsmflem 46783 smfsuplem2 46829 |
| Copyright terms: Public domain | W3C validator |