| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocborel | Structured version Visualization version GIF version | ||
| Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| iocborel.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| iocborel.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| iocborel.t | ⊢ 𝐽 = (topGen‘ran (,)) |
| iocborel.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| iocborel | ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocborel.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | iocborel.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 3 | 1, 2 | iooiinioc 45538 | . . 3 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) = (𝐴(,]𝐶)) |
| 4 | 3 | eqcomd 2735 | . 2 ⊢ (𝜑 → (𝐴(,]𝐶) = ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛)))) |
| 5 | iocborel.t | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 6 | iocborel.b | . . . . . . 7 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 7 | 5, 6 | bor1sal 46337 | . . . . . 6 ⊢ 𝐵 ∈ SAlg |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐵 ∈ SAlg) |
| 9 | nnct 13906 | . . . . . 6 ⊢ ℕ ≼ ω | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≼ ω) |
| 11 | nnn0 45358 | . . . . . 6 ⊢ ℕ ≠ ∅ | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≠ ∅) |
| 13 | 5, 6 | iooborel 46333 | . . . . . 6 ⊢ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 15 | 8, 10, 12, 14 | saliincl 46309 | . . . 4 ⊢ (⊤ → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 16 | 15 | mptru 1547 | . . 3 ⊢ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 18 | 4, 17 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 ∩ ciin 4945 class class class wbr 5095 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ωcom 7806 ≼ cdom 8877 ℝcr 11027 1c1 11029 + caddc 11031 ℝ*cxr 11167 / cdiv 11795 ℕcn 12146 (,)cioo 13266 (,]cioc 13267 topGenctg 17359 SAlgcsalg 46290 SalGencsalgen 46294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-ioo 13270 df-ioc 13271 df-fl 13714 df-topgen 17365 df-top 22797 df-bases 22849 df-salg 46291 df-salgen 46295 |
| This theorem is referenced by: incsmflem 46723 decsmflem 46748 smfsuplem2 46794 |
| Copyright terms: Public domain | W3C validator |