Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iocborel | Structured version Visualization version GIF version |
Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
iocborel.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
iocborel.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
iocborel.t | ⊢ 𝐽 = (topGen‘ran (,)) |
iocborel.b | ⊢ 𝐵 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
iocborel | ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iocborel.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | iocborel.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
3 | 1, 2 | iooiinioc 43048 | . . 3 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) = (𝐴(,]𝐶)) |
4 | 3 | eqcomd 2745 | . 2 ⊢ (𝜑 → (𝐴(,]𝐶) = ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛)))) |
5 | iocborel.t | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
6 | iocborel.b | . . . . . . 7 ⊢ 𝐵 = (SalGen‘𝐽) | |
7 | 5, 6 | bor1sal 43848 | . . . . . 6 ⊢ 𝐵 ∈ SAlg |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐵 ∈ SAlg) |
9 | nnct 13682 | . . . . . 6 ⊢ ℕ ≼ ω | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≼ ω) |
11 | nnn0 42871 | . . . . . 6 ⊢ ℕ ≠ ∅ | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≠ ∅) |
13 | 5, 6 | iooborel 43844 | . . . . . 6 ⊢ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
14 | 13 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
15 | 8, 10, 12, 14 | saliincl 43820 | . . . 4 ⊢ (⊤ → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
16 | 15 | mptru 1548 | . . 3 ⊢ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
18 | 4, 17 | eqeltrd 2840 | 1 ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2109 ≠ wne 2944 ∅c0 4261 ∩ ciin 4930 class class class wbr 5078 ran crn 5589 ‘cfv 6430 (class class class)co 7268 ωcom 7700 ≼ cdom 8705 ℝcr 10854 1c1 10856 + caddc 10858 ℝ*cxr 10992 / cdiv 11615 ℕcn 11956 (,)cioo 13061 (,]cioc 13062 topGenctg 17129 SAlgcsalg 43803 SalGencsalgen 43807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-card 9681 df-acn 9684 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-ioo 13065 df-ioc 13066 df-fl 13493 df-topgen 17135 df-top 22024 df-bases 22077 df-salg 43804 df-salgen 43808 |
This theorem is referenced by: incsmflem 44228 decsmflem 44252 smfsuplem2 44296 |
Copyright terms: Public domain | W3C validator |