| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iocborel | Structured version Visualization version GIF version | ||
| Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| iocborel.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| iocborel.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| iocborel.t | ⊢ 𝐽 = (topGen‘ran (,)) |
| iocborel.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| iocborel | ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocborel.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | iocborel.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 3 | 1, 2 | iooiinioc 45561 | . . 3 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) = (𝐴(,]𝐶)) |
| 4 | 3 | eqcomd 2736 | . 2 ⊢ (𝜑 → (𝐴(,]𝐶) = ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛)))) |
| 5 | iocborel.t | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 6 | iocborel.b | . . . . . . 7 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 7 | 5, 6 | bor1sal 46360 | . . . . . 6 ⊢ 𝐵 ∈ SAlg |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐵 ∈ SAlg) |
| 9 | nnct 13953 | . . . . . 6 ⊢ ℕ ≼ ω | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≼ ω) |
| 11 | nnn0 45381 | . . . . . 6 ⊢ ℕ ≠ ∅ | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℕ ≠ ∅) |
| 13 | 5, 6 | iooborel 46356 | . . . . . 6 ⊢ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 15 | 8, 10, 12, 14 | saliincl 46332 | . . . 4 ⊢ (⊤ → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 16 | 15 | mptru 1547 | . . 3 ⊢ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵 |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵) |
| 18 | 4, 17 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ∩ ciin 4959 class class class wbr 5110 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ≼ cdom 8919 ℝcr 11074 1c1 11076 + caddc 11078 ℝ*cxr 11214 / cdiv 11842 ℕcn 12193 (,)cioo 13313 (,]cioc 13314 topGenctg 17407 SAlgcsalg 46313 SalGencsalgen 46317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ioo 13317 df-ioc 13318 df-fl 13761 df-topgen 17413 df-top 22788 df-bases 22840 df-salg 46314 df-salgen 46318 |
| This theorem is referenced by: incsmflem 46746 decsmflem 46771 smfsuplem2 46817 |
| Copyright terms: Public domain | W3C validator |