| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| retop | ⊢ (topGen‘ran (,)) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24670 | . 2 ⊢ ran (,) ∈ TopBases | |
| 2 | tgcl 22879 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ran crn 5612 ‘cfv 6476 (,)cioo 13240 topGenctg 17336 Topctop 22803 TopBasesctb 22855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-ioo 13244 df-topgen 17342 df-top 22804 df-bases 22856 |
| This theorem is referenced by: retopon 24673 retps 24674 icccld 24676 icopnfcld 24677 iocmnfcld 24678 qdensere 24679 zcld 24724 iccntr 24732 icccmp 24736 reconnlem2 24738 retopconn 24740 rectbntr0 24743 cnmpopc 24844 icoopnst 24858 iocopnst 24859 cnheiborlem 24875 bndth 24879 pcoass 24946 evthicc 25382 ovolicc2 25445 subopnmbl 25527 dvlip 25920 dvlip2 25922 dvne0 25938 lhop2 25942 lhop 25943 dvcnvrelem2 25945 dvcnvre 25946 ftc1 25971 taylthlem2 26304 taylthlem2OLD 26305 cxpcn3 26680 lgamgulmlem2 26962 circtopn 33842 tpr2rico 33917 rrhqima 34019 rrhre 34026 brsiga 34188 unibrsiga 34191 elmbfmvol2 34272 sxbrsigalem3 34277 dya2iocbrsiga 34280 dya2icobrsiga 34281 dya2iocucvr 34289 sxbrsigalem1 34290 orrvcval4 34470 orrvcoel 34471 orrvccel 34472 retopsconn 35285 iccllysconn 35286 rellysconn 35287 cvmliftlem8 35328 cvmliftlem10 35330 ivthALT 36369 ptrecube 37660 poimirlem29 37689 poimirlem30 37690 poimirlem31 37691 poimir 37693 broucube 37694 mblfinlem1 37697 mblfinlem2 37698 mblfinlem3 37699 mblfinlem4 37700 ismblfin 37701 cnambfre 37708 ftc1cnnc 37732 dvrelog3 42098 redvmptabs 42393 reopn 45330 ioontr 45551 iocopn 45560 icoopn 45565 limciccioolb 45661 limcicciooub 45675 lptre2pt 45678 limcresiooub 45680 limcresioolb 45681 limclner 45689 limclr 45693 icccncfext 45925 cncfiooicclem1 45931 fperdvper 45957 stoweidlem53 46091 stoweidlem57 46095 dirkercncflem2 46142 dirkercncflem3 46143 dirkercncflem4 46144 fourierdlem32 46177 fourierdlem33 46178 fourierdlem42 46187 fourierdlem48 46192 fourierdlem49 46193 fourierdlem58 46202 fourierdlem62 46206 fourierdlem73 46217 fouriersw 46269 iooborel 46389 bor1sal 46393 incsmf 46780 decsmf 46805 smfpimbor1lem2 46837 smf2id 46839 smfco 46840 iooii 48949 |
| Copyright terms: Public domain | W3C validator |