Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version |
Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
retop | ⊢ (topGen‘ran (,)) ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 23933 | . 2 ⊢ ran (,) ∈ TopBases | |
2 | tgcl 22128 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ran crn 5591 ‘cfv 6437 (,)cioo 13088 topGenctg 17157 Topctop 22051 TopBasesctb 22104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-1st 7840 df-2nd 7841 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-ioo 13092 df-topgen 17163 df-top 22052 df-bases 22105 |
This theorem is referenced by: retopon 23936 retps 23937 icccld 23939 icopnfcld 23940 iocmnfcld 23941 qdensere 23942 zcld 23985 iccntr 23993 icccmp 23997 reconnlem2 23999 retopconn 24001 rectbntr0 24004 cnmpopc 24100 icoopnst 24111 iocopnst 24112 cnheiborlem 24126 bndth 24130 pcoass 24196 evthicc 24632 ovolicc2 24695 subopnmbl 24777 dvlip 25166 dvlip2 25168 dvne0 25184 lhop2 25188 lhop 25189 dvcnvrelem2 25191 dvcnvre 25192 ftc1 25215 taylthlem2 25542 cxpcn3 25910 lgamgulmlem2 26188 circtopn 31796 tpr2rico 31871 rrhqima 31973 rrhre 31980 brsiga 32160 unibrsiga 32163 elmbfmvol2 32243 sxbrsigalem3 32248 dya2iocbrsiga 32251 dya2icobrsiga 32252 dya2iocucvr 32260 sxbrsigalem1 32261 orrvcval4 32440 orrvcoel 32441 orrvccel 32442 retopsconn 33220 iccllysconn 33221 rellysconn 33222 cvmliftlem8 33263 cvmliftlem10 33265 ivthALT 34533 ptrecube 35786 poimirlem29 35815 poimirlem30 35816 poimirlem31 35817 poimir 35819 broucube 35820 mblfinlem1 35823 mblfinlem2 35824 mblfinlem3 35825 mblfinlem4 35826 ismblfin 35827 cnambfre 35834 ftc1cnnc 35858 dvrelog3 40080 reopn 42835 ioontr 43056 iocopn 43065 icoopn 43070 limciccioolb 43169 limcicciooub 43185 lptre2pt 43188 limcresiooub 43190 limcresioolb 43191 limclner 43199 limclr 43203 icccncfext 43435 cncfiooicclem1 43441 fperdvper 43467 stoweidlem53 43601 stoweidlem57 43605 dirkercncflem2 43652 dirkercncflem3 43653 dirkercncflem4 43654 fourierdlem32 43687 fourierdlem33 43688 fourierdlem42 43697 fourierdlem48 43702 fourierdlem49 43703 fourierdlem58 43712 fourierdlem62 43716 fourierdlem73 43727 fouriersw 43779 iooborel 43897 bor1sal 43901 incsmf 44287 decsmf 44312 smfpimbor1lem2 44344 smf2id 44346 smfco 44347 iooii 46222 |
Copyright terms: Public domain | W3C validator |