| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| retop | ⊢ (topGen‘ran (,)) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24655 | . 2 ⊢ ran (,) ∈ TopBases | |
| 2 | tgcl 22863 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ran crn 5642 ‘cfv 6514 (,)cioo 13313 topGenctg 17407 Topctop 22787 TopBasesctb 22839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 df-topgen 17413 df-top 22788 df-bases 22840 |
| This theorem is referenced by: retopon 24658 retps 24659 icccld 24661 icopnfcld 24662 iocmnfcld 24663 qdensere 24664 zcld 24709 iccntr 24717 icccmp 24721 reconnlem2 24723 retopconn 24725 rectbntr0 24728 cnmpopc 24829 icoopnst 24843 iocopnst 24844 cnheiborlem 24860 bndth 24864 pcoass 24931 evthicc 25367 ovolicc2 25430 subopnmbl 25512 dvlip 25905 dvlip2 25907 dvne0 25923 lhop2 25927 lhop 25928 dvcnvrelem2 25930 dvcnvre 25931 ftc1 25956 taylthlem2 26289 taylthlem2OLD 26290 cxpcn3 26665 lgamgulmlem2 26947 circtopn 33834 tpr2rico 33909 rrhqima 34011 rrhre 34018 brsiga 34180 unibrsiga 34183 elmbfmvol2 34265 sxbrsigalem3 34270 dya2iocbrsiga 34273 dya2icobrsiga 34274 dya2iocucvr 34282 sxbrsigalem1 34283 orrvcval4 34463 orrvcoel 34464 orrvccel 34465 retopsconn 35243 iccllysconn 35244 rellysconn 35245 cvmliftlem8 35286 cvmliftlem10 35288 ivthALT 36330 ptrecube 37621 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 poimir 37654 broucube 37655 mblfinlem1 37658 mblfinlem2 37659 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 cnambfre 37669 ftc1cnnc 37693 dvrelog3 42060 redvmptabs 42355 reopn 45294 ioontr 45516 iocopn 45525 icoopn 45530 limciccioolb 45626 limcicciooub 45642 lptre2pt 45645 limcresiooub 45647 limcresioolb 45648 limclner 45656 limclr 45660 icccncfext 45892 cncfiooicclem1 45898 fperdvper 45924 stoweidlem53 46058 stoweidlem57 46062 dirkercncflem2 46109 dirkercncflem3 46110 dirkercncflem4 46111 fourierdlem32 46144 fourierdlem33 46145 fourierdlem42 46154 fourierdlem48 46159 fourierdlem49 46160 fourierdlem58 46169 fourierdlem62 46173 fourierdlem73 46184 fouriersw 46236 iooborel 46356 bor1sal 46360 incsmf 46747 decsmf 46772 smfpimbor1lem2 46804 smf2id 46806 smfco 46807 iooii 48910 |
| Copyright terms: Public domain | W3C validator |