| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| retop | ⊢ (topGen‘ran (,)) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24697 | . 2 ⊢ ran (,) ∈ TopBases | |
| 2 | tgcl 22905 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ran crn 5655 ‘cfv 6530 (,)cioo 13360 topGenctg 17449 Topctop 22829 TopBasesctb 22881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-ioo 13364 df-topgen 17455 df-top 22830 df-bases 22882 |
| This theorem is referenced by: retopon 24700 retps 24701 icccld 24703 icopnfcld 24704 iocmnfcld 24705 qdensere 24706 zcld 24751 iccntr 24759 icccmp 24763 reconnlem2 24765 retopconn 24767 rectbntr0 24770 cnmpopc 24871 icoopnst 24885 iocopnst 24886 cnheiborlem 24902 bndth 24906 pcoass 24973 evthicc 25410 ovolicc2 25473 subopnmbl 25555 dvlip 25948 dvlip2 25950 dvne0 25966 lhop2 25970 lhop 25971 dvcnvrelem2 25973 dvcnvre 25974 ftc1 25999 taylthlem2 26332 taylthlem2OLD 26333 cxpcn3 26708 lgamgulmlem2 26990 circtopn 33814 tpr2rico 33889 rrhqima 33991 rrhre 33998 brsiga 34160 unibrsiga 34163 elmbfmvol2 34245 sxbrsigalem3 34250 dya2iocbrsiga 34253 dya2icobrsiga 34254 dya2iocucvr 34262 sxbrsigalem1 34263 orrvcval4 34443 orrvcoel 34444 orrvccel 34445 retopsconn 35217 iccllysconn 35218 rellysconn 35219 cvmliftlem8 35260 cvmliftlem10 35262 ivthALT 36299 ptrecube 37590 poimirlem29 37619 poimirlem30 37620 poimirlem31 37621 poimir 37623 broucube 37624 mblfinlem1 37627 mblfinlem2 37628 mblfinlem3 37629 mblfinlem4 37630 ismblfin 37631 cnambfre 37638 ftc1cnnc 37662 dvrelog3 42024 redvmptabs 42350 reopn 45266 ioontr 45488 iocopn 45497 icoopn 45502 limciccioolb 45598 limcicciooub 45614 lptre2pt 45617 limcresiooub 45619 limcresioolb 45620 limclner 45628 limclr 45632 icccncfext 45864 cncfiooicclem1 45870 fperdvper 45896 stoweidlem53 46030 stoweidlem57 46034 dirkercncflem2 46081 dirkercncflem3 46082 dirkercncflem4 46083 fourierdlem32 46116 fourierdlem33 46117 fourierdlem42 46126 fourierdlem48 46131 fourierdlem49 46132 fourierdlem58 46141 fourierdlem62 46145 fourierdlem73 46156 fouriersw 46208 iooborel 46328 bor1sal 46332 incsmf 46719 decsmf 46744 smfpimbor1lem2 46776 smf2id 46778 smfco 46779 iooii 48840 |
| Copyright terms: Public domain | W3C validator |