| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| retop | ⊢ (topGen‘ran (,)) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24624 | . 2 ⊢ ran (,) ∈ TopBases | |
| 2 | tgcl 22832 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ran crn 5632 ‘cfv 6499 (,)cioo 13282 topGenctg 17376 Topctop 22756 TopBasesctb 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ioo 13286 df-topgen 17382 df-top 22757 df-bases 22809 |
| This theorem is referenced by: retopon 24627 retps 24628 icccld 24630 icopnfcld 24631 iocmnfcld 24632 qdensere 24633 zcld 24678 iccntr 24686 icccmp 24690 reconnlem2 24692 retopconn 24694 rectbntr0 24697 cnmpopc 24798 icoopnst 24812 iocopnst 24813 cnheiborlem 24829 bndth 24833 pcoass 24900 evthicc 25336 ovolicc2 25399 subopnmbl 25481 dvlip 25874 dvlip2 25876 dvne0 25892 lhop2 25896 lhop 25897 dvcnvrelem2 25899 dvcnvre 25900 ftc1 25925 taylthlem2 26258 taylthlem2OLD 26259 cxpcn3 26634 lgamgulmlem2 26916 circtopn 33800 tpr2rico 33875 rrhqima 33977 rrhre 33984 brsiga 34146 unibrsiga 34149 elmbfmvol2 34231 sxbrsigalem3 34236 dya2iocbrsiga 34239 dya2icobrsiga 34240 dya2iocucvr 34248 sxbrsigalem1 34249 orrvcval4 34429 orrvcoel 34430 orrvccel 34431 retopsconn 35209 iccllysconn 35210 rellysconn 35211 cvmliftlem8 35252 cvmliftlem10 35254 ivthALT 36296 ptrecube 37587 poimirlem29 37616 poimirlem30 37617 poimirlem31 37618 poimir 37620 broucube 37621 mblfinlem1 37624 mblfinlem2 37625 mblfinlem3 37626 mblfinlem4 37627 ismblfin 37628 cnambfre 37635 ftc1cnnc 37659 dvrelog3 42026 redvmptabs 42321 reopn 45260 ioontr 45482 iocopn 45491 icoopn 45496 limciccioolb 45592 limcicciooub 45608 lptre2pt 45611 limcresiooub 45613 limcresioolb 45614 limclner 45622 limclr 45626 icccncfext 45858 cncfiooicclem1 45864 fperdvper 45890 stoweidlem53 46024 stoweidlem57 46028 dirkercncflem2 46075 dirkercncflem3 46076 dirkercncflem4 46077 fourierdlem32 46110 fourierdlem33 46111 fourierdlem42 46120 fourierdlem48 46125 fourierdlem49 46126 fourierdlem58 46135 fourierdlem62 46139 fourierdlem73 46150 fouriersw 46202 iooborel 46322 bor1sal 46326 incsmf 46713 decsmf 46738 smfpimbor1lem2 46770 smf2id 46772 smfco 46773 iooii 48879 |
| Copyright terms: Public domain | W3C validator |