Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version |
Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
retop | ⊢ (topGen‘ran (,)) ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 23830 | . 2 ⊢ ran (,) ∈ TopBases | |
2 | tgcl 22027 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (,)cioo 13008 topGenctg 17065 Topctop 21950 TopBasesctb 22003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 df-topgen 17071 df-top 21951 df-bases 22004 |
This theorem is referenced by: retopon 23833 retps 23834 icccld 23836 icopnfcld 23837 iocmnfcld 23838 qdensere 23839 zcld 23882 iccntr 23890 icccmp 23894 reconnlem2 23896 retopconn 23898 rectbntr0 23901 cnmpopc 23997 icoopnst 24008 iocopnst 24009 cnheiborlem 24023 bndth 24027 pcoass 24093 evthicc 24528 ovolicc2 24591 subopnmbl 24673 dvlip 25062 dvlip2 25064 dvne0 25080 lhop2 25084 lhop 25085 dvcnvrelem2 25087 dvcnvre 25088 ftc1 25111 taylthlem2 25438 cxpcn3 25806 lgamgulmlem2 26084 circtopn 31689 tpr2rico 31764 rrhqima 31864 rrhre 31871 brsiga 32051 unibrsiga 32054 elmbfmvol2 32134 sxbrsigalem3 32139 dya2iocbrsiga 32142 dya2icobrsiga 32143 dya2iocucvr 32151 sxbrsigalem1 32152 orrvcval4 32331 orrvcoel 32332 orrvccel 32333 retopsconn 33111 iccllysconn 33112 rellysconn 33113 cvmliftlem8 33154 cvmliftlem10 33156 ivthALT 34451 ptrecube 35704 poimirlem29 35733 poimirlem30 35734 poimirlem31 35735 poimir 35737 broucube 35738 mblfinlem1 35741 mblfinlem2 35742 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 cnambfre 35752 ftc1cnnc 35776 dvrelog3 40001 reopn 42717 ioontr 42939 iocopn 42948 icoopn 42953 limciccioolb 43052 limcicciooub 43068 lptre2pt 43071 limcresiooub 43073 limcresioolb 43074 limclner 43082 limclr 43086 icccncfext 43318 cncfiooicclem1 43324 fperdvper 43350 stoweidlem53 43484 stoweidlem57 43488 dirkercncflem2 43535 dirkercncflem3 43536 dirkercncflem4 43537 fourierdlem32 43570 fourierdlem33 43571 fourierdlem42 43580 fourierdlem48 43585 fourierdlem49 43586 fourierdlem58 43595 fourierdlem62 43599 fourierdlem73 43610 fouriersw 43662 iooborel 43780 bor1sal 43784 incsmf 44165 decsmf 44189 smfpimbor1lem2 44220 smf2id 44222 smfco 44223 iooii 46099 |
Copyright terms: Public domain | W3C validator |