| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| retop | ⊢ (topGen‘ran (,)) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24648 | . 2 ⊢ ran (,) ∈ TopBases | |
| 2 | tgcl 22856 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ran crn 5639 ‘cfv 6511 (,)cioo 13306 topGenctg 17400 Topctop 22780 TopBasesctb 22832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-topgen 17406 df-top 22781 df-bases 22833 |
| This theorem is referenced by: retopon 24651 retps 24652 icccld 24654 icopnfcld 24655 iocmnfcld 24656 qdensere 24657 zcld 24702 iccntr 24710 icccmp 24714 reconnlem2 24716 retopconn 24718 rectbntr0 24721 cnmpopc 24822 icoopnst 24836 iocopnst 24837 cnheiborlem 24853 bndth 24857 pcoass 24924 evthicc 25360 ovolicc2 25423 subopnmbl 25505 dvlip 25898 dvlip2 25900 dvne0 25916 lhop2 25920 lhop 25921 dvcnvrelem2 25923 dvcnvre 25924 ftc1 25949 taylthlem2 26282 taylthlem2OLD 26283 cxpcn3 26658 lgamgulmlem2 26940 circtopn 33827 tpr2rico 33902 rrhqima 34004 rrhre 34011 brsiga 34173 unibrsiga 34176 elmbfmvol2 34258 sxbrsigalem3 34263 dya2iocbrsiga 34266 dya2icobrsiga 34267 dya2iocucvr 34275 sxbrsigalem1 34276 orrvcval4 34456 orrvcoel 34457 orrvccel 34458 retopsconn 35236 iccllysconn 35237 rellysconn 35238 cvmliftlem8 35279 cvmliftlem10 35281 ivthALT 36323 ptrecube 37614 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimir 37647 broucube 37648 mblfinlem1 37651 mblfinlem2 37652 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 cnambfre 37662 ftc1cnnc 37686 dvrelog3 42053 redvmptabs 42348 reopn 45287 ioontr 45509 iocopn 45518 icoopn 45523 limciccioolb 45619 limcicciooub 45635 lptre2pt 45638 limcresiooub 45640 limcresioolb 45641 limclner 45649 limclr 45653 icccncfext 45885 cncfiooicclem1 45891 fperdvper 45917 stoweidlem53 46051 stoweidlem57 46055 dirkercncflem2 46102 dirkercncflem3 46103 dirkercncflem4 46104 fourierdlem32 46137 fourierdlem33 46138 fourierdlem42 46147 fourierdlem48 46152 fourierdlem49 46153 fourierdlem58 46162 fourierdlem62 46166 fourierdlem73 46177 fouriersw 46229 iooborel 46349 bor1sal 46353 incsmf 46740 decsmf 46765 smfpimbor1lem2 46797 smf2id 46799 smfco 46800 iooii 48906 |
| Copyright terms: Public domain | W3C validator |