Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version |
Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
retop | ⊢ (topGen‘ran (,)) ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 23658 | . 2 ⊢ ran (,) ∈ TopBases | |
2 | tgcl 21866 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ran crn 5552 ‘cfv 6380 (,)cioo 12935 topGenctg 16942 Topctop 21790 TopBasesctb 21842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-ioo 12939 df-topgen 16948 df-top 21791 df-bases 21843 |
This theorem is referenced by: retopon 23661 retps 23662 icccld 23664 icopnfcld 23665 iocmnfcld 23666 qdensere 23667 zcld 23710 iccntr 23718 icccmp 23722 reconnlem2 23724 retopconn 23726 rectbntr0 23729 cnmpopc 23825 icoopnst 23836 iocopnst 23837 cnheiborlem 23851 bndth 23855 pcoass 23921 evthicc 24356 ovolicc2 24419 subopnmbl 24501 dvlip 24890 dvlip2 24892 dvne0 24908 lhop2 24912 lhop 24913 dvcnvrelem2 24915 dvcnvre 24916 ftc1 24939 taylthlem2 25266 cxpcn3 25634 lgamgulmlem2 25912 circtopn 31501 tpr2rico 31576 rrhqima 31676 rrhre 31683 brsiga 31863 unibrsiga 31866 elmbfmvol2 31946 sxbrsigalem3 31951 dya2iocbrsiga 31954 dya2icobrsiga 31955 dya2iocucvr 31963 sxbrsigalem1 31964 orrvcval4 32143 orrvcoel 32144 orrvccel 32145 retopsconn 32924 iccllysconn 32925 rellysconn 32926 cvmliftlem8 32967 cvmliftlem10 32969 ivthALT 34261 ptrecube 35514 poimirlem29 35543 poimirlem30 35544 poimirlem31 35545 poimir 35547 broucube 35548 mblfinlem1 35551 mblfinlem2 35552 mblfinlem3 35553 mblfinlem4 35554 ismblfin 35555 cnambfre 35562 ftc1cnnc 35586 dvrelog3 39806 reopn 42500 ioontr 42724 iocopn 42733 icoopn 42738 limciccioolb 42837 limcicciooub 42853 lptre2pt 42856 limcresiooub 42858 limcresioolb 42859 limclner 42867 limclr 42871 icccncfext 43103 cncfiooicclem1 43109 fperdvper 43135 stoweidlem53 43269 stoweidlem57 43273 dirkercncflem2 43320 dirkercncflem3 43321 dirkercncflem4 43322 fourierdlem32 43355 fourierdlem33 43356 fourierdlem42 43365 fourierdlem48 43370 fourierdlem49 43371 fourierdlem58 43380 fourierdlem62 43384 fourierdlem73 43395 fouriersw 43447 iooborel 43565 bor1sal 43569 incsmf 43950 decsmf 43974 smfpimbor1lem2 44005 smf2id 44007 smfco 44008 iooii 45884 |
Copyright terms: Public domain | W3C validator |