| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| retop | ⊢ (topGen‘ran (,)) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24646 | . 2 ⊢ ran (,) ∈ TopBases | |
| 2 | tgcl 22854 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ran crn 5620 ‘cfv 6482 (,)cioo 13248 topGenctg 17341 Topctop 22778 TopBasesctb 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ioo 13252 df-topgen 17347 df-top 22779 df-bases 22831 |
| This theorem is referenced by: retopon 24649 retps 24650 icccld 24652 icopnfcld 24653 iocmnfcld 24654 qdensere 24655 zcld 24700 iccntr 24708 icccmp 24712 reconnlem2 24714 retopconn 24716 rectbntr0 24719 cnmpopc 24820 icoopnst 24834 iocopnst 24835 cnheiborlem 24851 bndth 24855 pcoass 24922 evthicc 25358 ovolicc2 25421 subopnmbl 25503 dvlip 25896 dvlip2 25898 dvne0 25914 lhop2 25918 lhop 25919 dvcnvrelem2 25921 dvcnvre 25922 ftc1 25947 taylthlem2 26280 taylthlem2OLD 26281 cxpcn3 26656 lgamgulmlem2 26938 circtopn 33804 tpr2rico 33879 rrhqima 33981 rrhre 33988 brsiga 34150 unibrsiga 34153 elmbfmvol2 34235 sxbrsigalem3 34240 dya2iocbrsiga 34243 dya2icobrsiga 34244 dya2iocucvr 34252 sxbrsigalem1 34253 orrvcval4 34433 orrvcoel 34434 orrvccel 34435 retopsconn 35222 iccllysconn 35223 rellysconn 35224 cvmliftlem8 35265 cvmliftlem10 35267 ivthALT 36309 ptrecube 37600 poimirlem29 37629 poimirlem30 37630 poimirlem31 37631 poimir 37633 broucube 37634 mblfinlem1 37637 mblfinlem2 37638 mblfinlem3 37639 mblfinlem4 37640 ismblfin 37641 cnambfre 37648 ftc1cnnc 37672 dvrelog3 42038 redvmptabs 42333 reopn 45271 ioontr 45492 iocopn 45501 icoopn 45506 limciccioolb 45602 limcicciooub 45618 lptre2pt 45621 limcresiooub 45623 limcresioolb 45624 limclner 45632 limclr 45636 icccncfext 45868 cncfiooicclem1 45874 fperdvper 45900 stoweidlem53 46034 stoweidlem57 46038 dirkercncflem2 46085 dirkercncflem3 46086 dirkercncflem4 46087 fourierdlem32 46120 fourierdlem33 46121 fourierdlem42 46130 fourierdlem48 46135 fourierdlem49 46136 fourierdlem58 46145 fourierdlem62 46149 fourierdlem73 46160 fouriersw 46212 iooborel 46332 bor1sal 46336 incsmf 46723 decsmf 46748 smfpimbor1lem2 46780 smf2id 46782 smfco 46783 iooii 48902 |
| Copyright terms: Public domain | W3C validator |