![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version |
Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
retop | ⊢ (topGen‘ran (,)) ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 24796 | . 2 ⊢ ran (,) ∈ TopBases | |
2 | tgcl 22991 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ran crn 5689 ‘cfv 6562 (,)cioo 13383 topGenctg 17483 Topctop 22914 TopBasesctb 22967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-ioo 13387 df-topgen 17489 df-top 22915 df-bases 22968 |
This theorem is referenced by: retopon 24799 retps 24800 icccld 24802 icopnfcld 24803 iocmnfcld 24804 qdensere 24805 zcld 24848 iccntr 24856 icccmp 24860 reconnlem2 24862 retopconn 24864 rectbntr0 24867 cnmpopc 24968 icoopnst 24982 iocopnst 24983 cnheiborlem 24999 bndth 25003 pcoass 25070 evthicc 25507 ovolicc2 25570 subopnmbl 25652 dvlip 26046 dvlip2 26048 dvne0 26064 lhop2 26068 lhop 26069 dvcnvrelem2 26071 dvcnvre 26072 ftc1 26097 taylthlem2 26430 taylthlem2OLD 26431 cxpcn3 26805 lgamgulmlem2 27087 circtopn 33797 tpr2rico 33872 rrhqima 33976 rrhre 33983 brsiga 34163 unibrsiga 34166 elmbfmvol2 34248 sxbrsigalem3 34253 dya2iocbrsiga 34256 dya2icobrsiga 34257 dya2iocucvr 34265 sxbrsigalem1 34266 orrvcval4 34445 orrvcoel 34446 orrvccel 34447 retopsconn 35233 iccllysconn 35234 rellysconn 35235 cvmliftlem8 35276 cvmliftlem10 35278 ivthALT 36317 ptrecube 37606 poimirlem29 37635 poimirlem30 37636 poimirlem31 37637 poimir 37639 broucube 37640 mblfinlem1 37643 mblfinlem2 37644 mblfinlem3 37645 mblfinlem4 37646 ismblfin 37647 cnambfre 37654 ftc1cnnc 37678 dvrelog3 42046 redvmptabs 42368 reopn 45239 ioontr 45463 iocopn 45472 icoopn 45477 limciccioolb 45576 limcicciooub 45592 lptre2pt 45595 limcresiooub 45597 limcresioolb 45598 limclner 45606 limclr 45610 icccncfext 45842 cncfiooicclem1 45848 fperdvper 45874 stoweidlem53 46008 stoweidlem57 46012 dirkercncflem2 46059 dirkercncflem3 46060 dirkercncflem4 46061 fourierdlem32 46094 fourierdlem33 46095 fourierdlem42 46104 fourierdlem48 46109 fourierdlem49 46110 fourierdlem58 46119 fourierdlem62 46123 fourierdlem73 46134 fouriersw 46186 iooborel 46306 bor1sal 46310 incsmf 46697 decsmf 46722 smfpimbor1lem2 46754 smf2id 46756 smfco 46757 iooii 48713 |
Copyright terms: Public domain | W3C validator |