![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > retop | Structured version Visualization version GIF version |
Description: The standard topology on the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
retop | ⊢ (topGen‘ran (,)) ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 24802 | . 2 ⊢ ran (,) ∈ TopBases | |
2 | tgcl 22997 | . 2 ⊢ (ran (,) ∈ TopBases → (topGen‘ran (,)) ∈ Top) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (topGen‘ran (,)) ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ran crn 5701 ‘cfv 6573 (,)cioo 13407 topGenctg 17497 Topctop 22920 TopBasesctb 22973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 df-topgen 17503 df-top 22921 df-bases 22974 |
This theorem is referenced by: retopon 24805 retps 24806 icccld 24808 icopnfcld 24809 iocmnfcld 24810 qdensere 24811 zcld 24854 iccntr 24862 icccmp 24866 reconnlem2 24868 retopconn 24870 rectbntr0 24873 cnmpopc 24974 icoopnst 24988 iocopnst 24989 cnheiborlem 25005 bndth 25009 pcoass 25076 evthicc 25513 ovolicc2 25576 subopnmbl 25658 dvlip 26052 dvlip2 26054 dvne0 26070 lhop2 26074 lhop 26075 dvcnvrelem2 26077 dvcnvre 26078 ftc1 26103 taylthlem2 26434 taylthlem2OLD 26435 cxpcn3 26809 lgamgulmlem2 27091 circtopn 33783 tpr2rico 33858 rrhqima 33960 rrhre 33967 brsiga 34147 unibrsiga 34150 elmbfmvol2 34232 sxbrsigalem3 34237 dya2iocbrsiga 34240 dya2icobrsiga 34241 dya2iocucvr 34249 sxbrsigalem1 34250 orrvcval4 34429 orrvcoel 34430 orrvccel 34431 retopsconn 35217 iccllysconn 35218 rellysconn 35219 cvmliftlem8 35260 cvmliftlem10 35262 ivthALT 36301 ptrecube 37580 poimirlem29 37609 poimirlem30 37610 poimirlem31 37611 poimir 37613 broucube 37614 mblfinlem1 37617 mblfinlem2 37618 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 cnambfre 37628 ftc1cnnc 37652 dvrelog3 42022 reopn 45204 ioontr 45429 iocopn 45438 icoopn 45443 limciccioolb 45542 limcicciooub 45558 lptre2pt 45561 limcresiooub 45563 limcresioolb 45564 limclner 45572 limclr 45576 icccncfext 45808 cncfiooicclem1 45814 fperdvper 45840 stoweidlem53 45974 stoweidlem57 45978 dirkercncflem2 46025 dirkercncflem3 46026 dirkercncflem4 46027 fourierdlem32 46060 fourierdlem33 46061 fourierdlem42 46070 fourierdlem48 46075 fourierdlem49 46076 fourierdlem58 46085 fourierdlem62 46089 fourierdlem73 46100 fouriersw 46152 iooborel 46272 bor1sal 46276 incsmf 46663 decsmf 46688 smfpimbor1lem2 46720 smf2id 46722 smfco 46723 iooii 48597 |
Copyright terms: Public domain | W3C validator |