MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsucnn Structured version   Visualization version   GIF version

Theorem cardsucnn 9976
Description: The cardinality of the successor of a finite ordinal (natural number). This theorem does not hold for infinite ordinals; see cardsucinf 9975. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
cardsucnn (𝐴 ∈ Ο‰ β†’ (cardβ€˜suc 𝐴) = suc (cardβ€˜π΄))

Proof of Theorem cardsucnn
StepHypRef Expression
1 peano2 7877 . . 3 (𝐴 ∈ Ο‰ β†’ suc 𝐴 ∈ Ο‰)
2 cardnn 9954 . . 3 (suc 𝐴 ∈ Ο‰ β†’ (cardβ€˜suc 𝐴) = suc 𝐴)
31, 2syl 17 . 2 (𝐴 ∈ Ο‰ β†’ (cardβ€˜suc 𝐴) = suc 𝐴)
4 cardnn 9954 . . 3 (𝐴 ∈ Ο‰ β†’ (cardβ€˜π΄) = 𝐴)
5 suceq 6427 . . 3 ((cardβ€˜π΄) = 𝐴 β†’ suc (cardβ€˜π΄) = suc 𝐴)
64, 5syl 17 . 2 (𝐴 ∈ Ο‰ β†’ suc (cardβ€˜π΄) = suc 𝐴)
73, 6eqtr4d 2775 1 (𝐴 ∈ Ο‰ β†’ (cardβ€˜suc 𝐴) = suc (cardβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  suc csuc 6363  β€˜cfv 6540  Ο‰com 7851  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator