![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardsucnn | Structured version Visualization version GIF version |
Description: The cardinality of the successor of a finite ordinal (natural number). This theorem does not hold for infinite ordinals; see cardsucinf 9975. (Contributed by NM, 7-Nov-2008.) |
Ref | Expression |
---|---|
cardsucnn | β’ (π΄ β Ο β (cardβsuc π΄) = suc (cardβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 7877 | . . 3 β’ (π΄ β Ο β suc π΄ β Ο) | |
2 | cardnn 9954 | . . 3 β’ (suc π΄ β Ο β (cardβsuc π΄) = suc π΄) | |
3 | 1, 2 | syl 17 | . 2 β’ (π΄ β Ο β (cardβsuc π΄) = suc π΄) |
4 | cardnn 9954 | . . 3 β’ (π΄ β Ο β (cardβπ΄) = π΄) | |
5 | suceq 6427 | . . 3 β’ ((cardβπ΄) = π΄ β suc (cardβπ΄) = suc π΄) | |
6 | 4, 5 | syl 17 | . 2 β’ (π΄ β Ο β suc (cardβπ΄) = suc π΄) |
7 | 3, 6 | eqtr4d 2775 | 1 β’ (π΄ β Ο β (cardβsuc π΄) = suc (cardβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 suc csuc 6363 βcfv 6540 Οcom 7851 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |