Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme8 Structured version   Visualization version   GIF version

Theorem cdleme8 39633
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐢 represents s1. In their notation, we prove p ∨ s1 = p ∨ s. (Contributed by NM, 9-Jun-2012.)
Hypotheses
Ref Expression
cdleme8.l ≀ = (leβ€˜πΎ)
cdleme8.j ∨ = (joinβ€˜πΎ)
cdleme8.m ∧ = (meetβ€˜πΎ)
cdleme8.a 𝐴 = (Atomsβ€˜πΎ)
cdleme8.h 𝐻 = (LHypβ€˜πΎ)
cdleme8.4 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
cdleme8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝐢) = (𝑃 ∨ 𝑆))

Proof of Theorem cdleme8
StepHypRef Expression
1 cdleme8.4 . . 3 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
21oveq2i 7415 . 2 (𝑃 ∨ 𝐢) = (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))
3 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ 𝐾 ∈ HL)
4 simp2l 1196 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ 𝑃 ∈ 𝐴)
53hllatd 38746 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ 𝐾 ∈ Lat)
6 eqid 2726 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
7 cdleme8.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
86, 7atbase 38671 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
94, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
106, 7atbase 38671 . . . . . 6 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
11103ad2ant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
12 cdleme8.j . . . . . 6 ∨ = (joinβ€˜πΎ)
136, 12latjcl 18401 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
145, 9, 11, 13syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
15 simp1r 1195 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ π‘Š ∈ 𝐻)
16 cdleme8.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
176, 16lhpbase 39381 . . . . 5 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
1815, 17syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ π‘Š ∈ (Baseβ€˜πΎ))
19 cdleme8.l . . . . . 6 ≀ = (leβ€˜πΎ)
206, 19, 12latlej1 18410 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ 𝑃 ≀ (𝑃 ∨ 𝑆))
215, 9, 11, 20syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ 𝑃 ≀ (𝑃 ∨ 𝑆))
22 cdleme8.m . . . . 5 ∧ = (meetβ€˜πΎ)
236, 19, 12, 22, 7atmod3i1 39247 . . . 4 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑃 ≀ (𝑃 ∨ 𝑆)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ π‘Š)))
243, 4, 14, 18, 21, 23syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)) = ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ π‘Š)))
25 eqid 2726 . . . . . 6 (1.β€˜πΎ) = (1.β€˜πΎ)
2619, 12, 25, 7, 16lhpjat2 39404 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ π‘Š) = (1.β€˜πΎ))
27263adant3 1129 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ π‘Š) = (1.β€˜πΎ))
2827oveq2d 7420 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑃 ∨ π‘Š)) = ((𝑃 ∨ 𝑆) ∧ (1.β€˜πΎ)))
29 hlol 38743 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
303, 29syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ 𝐾 ∈ OL)
316, 22, 25olm11 38609 . . . 4 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑆))
3230, 14, 31syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ ((𝑃 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑆))
3324, 28, 323eqtrd 2770 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)) = (𝑃 ∨ 𝑆))
342, 33eqtrid 2778 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝐢) = (𝑃 ∨ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  lecple 17210  joincjn 18273  meetcmee 18274  1.cp1 18386  Latclat 18393  OLcol 38556  Atomscatm 38645  HLchlt 38732  LHypclh 39367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-proset 18257  df-poset 18275  df-plt 18292  df-lub 18308  df-glb 18309  df-join 18310  df-meet 18311  df-p0 18387  df-p1 18388  df-lat 18394  df-clat 18461  df-oposet 38558  df-ol 38560  df-oml 38561  df-covers 38648  df-ats 38649  df-atl 38680  df-cvlat 38704  df-hlat 38733  df-psubsp 38886  df-pmap 38887  df-padd 39179  df-lhyp 39371
This theorem is referenced by:  cdleme8tN  39638  cdleme15a  39657  cdleme17b  39670  cdlemg3a  39980
  Copyright terms: Public domain W3C validator