Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat2 Structured version   Visualization version   GIF version

Theorem lhpat2 37796
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 21-Nov-2012.)
Hypotheses
Ref Expression
lhpat.l = (le‘𝐾)
lhpat.j = (join‘𝐾)
lhpat.m = (meet‘𝐾)
lhpat.a 𝐴 = (Atoms‘𝐾)
lhpat.h 𝐻 = (LHyp‘𝐾)
lhpat2.r 𝑅 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
lhpat2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑅𝐴)

Proof of Theorem lhpat2
StepHypRef Expression
1 lhpat2.r . 2 𝑅 = ((𝑃 𝑄) 𝑊)
2 lhpat.l . . 3 = (le‘𝐾)
3 lhpat.j . . 3 = (join‘𝐾)
4 lhpat.m . . 3 = (meet‘𝐾)
5 lhpat.a . . 3 𝐴 = (Atoms‘𝐾)
6 lhpat.h . . 3 𝐻 = (LHyp‘𝐾)
72, 3, 4, 5, 6lhpat 37794 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
81, 7eqeltrid 2842 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  cfv 6380  (class class class)co 7213  lecple 16809  joincjn 17818  meetcmee 17819  Atomscatm 37014  HLchlt 37101  LHypclh 37735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-lhyp 37739
This theorem is referenced by:  lhpat3  37797  4atexlemu  37815  4atexlemv  37816  cdleme0a  37962  cdleme0dN  37967  cdleme0e  37968  cdleme02N  37973  cdleme0ex1N  37974  cdleme0moN  37976  cdleme3b  37980  cdleme3c  37981  cdleme3g  37985  cdleme3h  37986  cdleme3  37988  cdleme7aa  37993  cdleme7c  37996  cdleme7d  37997  cdleme7e  37998  cdleme7ga  37999  cdleme7  38000  cdleme9a  38002  cdleme16aN  38010  cdleme11a  38011  cdleme11c  38012  cdleme12  38022  cdleme16b  38030  cdleme16c  38031  cdleme16d  38032  cdleme20h  38067  cdleme20j  38069  cdleme20l2  38072  cdlemeg46rgv  38279  cdlemeg46req  38280
  Copyright terms: Public domain W3C validator