![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpat2 | Structured version Visualization version GIF version |
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 21-Nov-2012.) |
Ref | Expression |
---|---|
lhpat.l | β’ β€ = (leβπΎ) |
lhpat.j | β’ β¨ = (joinβπΎ) |
lhpat.m | β’ β§ = (meetβπΎ) |
lhpat.a | β’ π΄ = (AtomsβπΎ) |
lhpat.h | β’ π» = (LHypβπΎ) |
lhpat2.r | β’ π = ((π β¨ π) β§ π) |
Ref | Expression |
---|---|
lhpat2 | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpat2.r | . 2 β’ π = ((π β¨ π) β§ π) | |
2 | lhpat.l | . . 3 β’ β€ = (leβπΎ) | |
3 | lhpat.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | lhpat.m | . . 3 β’ β§ = (meetβπΎ) | |
5 | lhpat.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
6 | lhpat.h | . . 3 β’ π» = (LHypβπΎ) | |
7 | 2, 3, 4, 5, 6 | lhpat 38902 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β ((π β¨ π) β§ π) β π΄) |
8 | 1, 7 | eqeltrid 2837 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 (class class class)co 7405 lecple 17200 joincjn 18260 meetcmee 18261 Atomscatm 38121 HLchlt 38208 LHypclh 38843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-lhyp 38847 |
This theorem is referenced by: lhpat3 38905 4atexlemu 38923 4atexlemv 38924 cdleme0a 39070 cdleme0dN 39075 cdleme0e 39076 cdleme02N 39081 cdleme0ex1N 39082 cdleme0moN 39084 cdleme3b 39088 cdleme3c 39089 cdleme3g 39093 cdleme3h 39094 cdleme3 39096 cdleme7aa 39101 cdleme7c 39104 cdleme7d 39105 cdleme7e 39106 cdleme7ga 39107 cdleme7 39108 cdleme9a 39110 cdleme16aN 39118 cdleme11a 39119 cdleme11c 39120 cdleme12 39130 cdleme16b 39138 cdleme16c 39139 cdleme16d 39140 cdleme20h 39175 cdleme20j 39177 cdleme20l2 39180 cdlemeg46rgv 39387 cdlemeg46req 39388 |
Copyright terms: Public domain | W3C validator |