Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg5 Structured version   Visualization version   GIF version

Theorem cdlemg5 38924
Description: TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 38324? TODO: The hypothesis is unused. FIX COMMENT. (Contributed by NM, 26-Apr-2013.)
Hypotheses
Ref Expression
cdlemg5.l = (le‘𝐾)
cdlemg5.j = (join‘𝐾)
cdlemg5.a 𝐴 = (Atoms‘𝐾)
cdlemg5.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemg5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
Distinct variable groups:   𝐴,𝑞   𝐻,𝑞   𝐾,𝑞   ,𝑞   𝑃,𝑞   𝑊,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem cdlemg5
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 cdlemg5.l . . . 4 = (le‘𝐾)
2 cdlemg5.a . . . 4 𝐴 = (Atoms‘𝐾)
3 cdlemg5.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle 38324 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑟𝐴 𝑟 𝑊)
54adantr 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑟𝐴 𝑟 𝑊)
6 simpll 765 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpr 486 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → (𝑟𝐴𝑟 𝑊))
8 simplr 767 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 cdlemg5.j . . . . 5 = (join‘𝐾)
101, 9, 2, 3cdlemf1 38880 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑟𝐴𝑟 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)))
116, 7, 8, 10syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)))
12 3simpa 1148 . . . 4 ((𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
1312reximi 3084 . . 3 (∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
1411, 13syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
155, 14rexlimddv 3155 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wrex 3071   class class class wbr 5096  cfv 6483  (class class class)co 7341  lecple 17066  joincjn 18126  Atomscatm 37581  HLchlt 37668  LHypclh 38303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-proset 18110  df-poset 18128  df-plt 18145  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-p0 18240  df-p1 18241  df-lat 18247  df-clat 18314  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-lhyp 38307
This theorem is referenced by:  cdlemb3  38925
  Copyright terms: Public domain W3C validator