| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg5 | Structured version Visualization version GIF version | ||
| Description: TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 39999? TODO: The ∨ hypothesis is unused. FIX COMMENT. (Contributed by NM, 26-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemg5.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg5.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| cdlemg5 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdlemg5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | cdlemg5.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 1, 2, 3 | lhpexle 39999 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑊) |
| 5 | 4 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑊) |
| 6 | simpll 766 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | simpr 484 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) | |
| 8 | simplr 768 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 9 | cdlemg5.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 10 | 1, 9, 2, 3 | cdlemf1 40555 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞))) |
| 11 | 6, 7, 8, 10 | syl3anc 1373 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞))) |
| 12 | 3simpa 1148 | . . . 4 ⊢ ((𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞)) → (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) | |
| 13 | 12 | reximi 3067 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
| 14 | 11, 13 | syl 17 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
| 15 | 5, 14 | rexlimddv 3140 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 Atomscatm 39256 HLchlt 39343 LHypclh 39978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-lhyp 39982 |
| This theorem is referenced by: cdlemb3 40600 |
| Copyright terms: Public domain | W3C validator |