Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg5 Structured version   Visualization version   GIF version

Theorem cdlemg5 37733
Description: TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 37133? TODO: The hypothesis is unused. FIX COMMENT. (Contributed by NM, 26-Apr-2013.)
Hypotheses
Ref Expression
cdlemg5.l = (le‘𝐾)
cdlemg5.j = (join‘𝐾)
cdlemg5.a 𝐴 = (Atoms‘𝐾)
cdlemg5.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemg5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
Distinct variable groups:   𝐴,𝑞   𝐻,𝑞   𝐾,𝑞   ,𝑞   𝑃,𝑞   𝑊,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem cdlemg5
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 cdlemg5.l . . . 4 = (le‘𝐾)
2 cdlemg5.a . . . 4 𝐴 = (Atoms‘𝐾)
3 cdlemg5.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle 37133 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑟𝐴 𝑟 𝑊)
54adantr 483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑟𝐴 𝑟 𝑊)
6 simpll 765 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpr 487 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → (𝑟𝐴𝑟 𝑊))
8 simplr 767 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 cdlemg5.j . . . . 5 = (join‘𝐾)
101, 9, 2, 3cdlemf1 37689 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑟𝐴𝑟 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)))
116, 7, 8, 10syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)))
12 3simpa 1143 . . . 4 ((𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)) → (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
1312reximi 3241 . . 3 (∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊𝑟 (𝑃 𝑞)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
1411, 13syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑟𝐴𝑟 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
155, 14rexlimddv 3289 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑞𝐴 (𝑃𝑞 ∧ ¬ 𝑞 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  lecple 16564  joincjn 17546  Atomscatm 36391  HLchlt 36478  LHypclh 37112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-lhyp 37116
This theorem is referenced by:  cdlemb3  37734
  Copyright terms: Public domain W3C validator