Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg5 | Structured version Visualization version GIF version |
Description: TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 38324? TODO: The ∨ hypothesis is unused. FIX COMMENT. (Contributed by NM, 26-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg5.l | ⊢ ≤ = (le‘𝐾) |
cdlemg5.j | ⊢ ∨ = (join‘𝐾) |
cdlemg5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
cdlemg5 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | cdlemg5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | cdlemg5.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhpexle 38324 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑊) |
5 | 4 | adantr 482 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 𝑟 ≤ 𝑊) |
6 | simpll 765 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simpr 486 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) | |
8 | simplr 767 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
9 | cdlemg5.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
10 | 1, 9, 2, 3 | cdlemf1 38880 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞))) |
11 | 6, 7, 8, 10 | syl3anc 1371 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞))) |
12 | 3simpa 1148 | . . . 4 ⊢ ((𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞)) → (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) | |
13 | 12 | reximi 3084 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝑟 ≤ (𝑃 ∨ 𝑞)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
14 | 11, 13 | syl 17 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑟 ∈ 𝐴 ∧ 𝑟 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
15 | 5, 14 | rexlimddv 3155 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (𝑃 ≠ 𝑞 ∧ ¬ 𝑞 ≤ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∃wrex 3071 class class class wbr 5096 ‘cfv 6483 (class class class)co 7341 lecple 17066 joincjn 18126 Atomscatm 37581 HLchlt 37668 LHypclh 38303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-proset 18110 df-poset 18128 df-plt 18145 df-lub 18161 df-glb 18162 df-join 18163 df-meet 18164 df-p0 18240 df-p1 18241 df-lat 18247 df-clat 18314 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-lhyp 38307 |
This theorem is referenced by: cdlemb3 38925 |
Copyright terms: Public domain | W3C validator |