MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Structured version   Visualization version   GIF version

Theorem cnmpt22f 23170
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt21.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
cnmpt21.a (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐴) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿))
cnmpt2t.b (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐡) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑀))
cnmpt22f.f (πœ‘ β†’ 𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁))
Assertion
Ref Expression
cnmpt22f (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ (𝐴𝐹𝐡)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑁))
Distinct variable groups:   π‘₯,𝑦,𝐹   π‘₯,𝐿,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝑋,𝑦   π‘₯,𝑀,𝑦   π‘₯,𝑁,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑦)   𝐽(π‘₯,𝑦)   𝐾(π‘₯,𝑦)

Proof of Theorem cnmpt22f
Dummy variables 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 cnmpt21.k . 2 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
3 cnmpt21.a . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐴) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿))
4 cnmpt2t.b . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐡) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑀))
5 cntop2 22736 . . . 4 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐴) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿) β†’ 𝐿 ∈ Top)
63, 5syl 17 . . 3 (πœ‘ β†’ 𝐿 ∈ Top)
7 toptopon2 22411 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
86, 7sylib 217 . 2 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
9 cntop2 22736 . . . 4 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐡) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑀) β†’ 𝑀 ∈ Top)
104, 9syl 17 . . 3 (πœ‘ β†’ 𝑀 ∈ Top)
11 toptopon2 22411 . . 3 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOnβ€˜βˆͺ 𝑀))
1210, 11sylib 217 . 2 (πœ‘ β†’ 𝑀 ∈ (TopOnβ€˜βˆͺ 𝑀))
13 txtopon 23086 . . . . . . 7 ((𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿) ∧ 𝑀 ∈ (TopOnβ€˜βˆͺ 𝑀)) β†’ (𝐿 Γ—t 𝑀) ∈ (TopOnβ€˜(βˆͺ 𝐿 Γ— βˆͺ 𝑀)))
148, 12, 13syl2anc 584 . . . . . 6 (πœ‘ β†’ (𝐿 Γ—t 𝑀) ∈ (TopOnβ€˜(βˆͺ 𝐿 Γ— βˆͺ 𝑀)))
15 cnmpt22f.f . . . . . . . 8 (πœ‘ β†’ 𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁))
16 cntop2 22736 . . . . . . . 8 (𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁) β†’ 𝑁 ∈ Top)
1715, 16syl 17 . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ Top)
18 toptopon2 22411 . . . . . . 7 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁))
1917, 18sylib 217 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁))
20 cnf2 22744 . . . . . 6 (((𝐿 Γ—t 𝑀) ∈ (TopOnβ€˜(βˆͺ 𝐿 Γ— βˆͺ 𝑀)) ∧ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁) ∧ 𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁)) β†’ 𝐹:(βˆͺ 𝐿 Γ— βˆͺ 𝑀)⟢βˆͺ 𝑁)
2114, 19, 15, 20syl3anc 1371 . . . . 5 (πœ‘ β†’ 𝐹:(βˆͺ 𝐿 Γ— βˆͺ 𝑀)⟢βˆͺ 𝑁)
2221ffnd 6715 . . . 4 (πœ‘ β†’ 𝐹 Fn (βˆͺ 𝐿 Γ— βˆͺ 𝑀))
23 fnov 7536 . . . 4 (𝐹 Fn (βˆͺ 𝐿 Γ— βˆͺ 𝑀) ↔ 𝐹 = (𝑧 ∈ βˆͺ 𝐿, 𝑀 ∈ βˆͺ 𝑀 ↦ (𝑧𝐹𝑀)))
2422, 23sylib 217 . . 3 (πœ‘ β†’ 𝐹 = (𝑧 ∈ βˆͺ 𝐿, 𝑀 ∈ βˆͺ 𝑀 ↦ (𝑧𝐹𝑀)))
2524, 15eqeltrrd 2834 . 2 (πœ‘ β†’ (𝑧 ∈ βˆͺ 𝐿, 𝑀 ∈ βˆͺ 𝑀 ↦ (𝑧𝐹𝑀)) ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁))
26 oveq12 7414 . 2 ((𝑧 = 𝐴 ∧ 𝑀 = 𝐡) β†’ (𝑧𝐹𝑀) = (𝐴𝐹𝐡))
271, 2, 3, 4, 8, 12, 25, 26cnmpt22 23169 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ (𝐴𝐹𝐡)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆͺ cuni 4907   Γ— cxp 5673   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Topctop 22386  TopOnctopon 22403   Cn ccn 22719   Γ—t ctx 23055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818  df-topgen 17385  df-top 22387  df-topon 22404  df-bases 22440  df-cn 22722  df-tx 23057
This theorem is referenced by:  cnmptcom  23173  cnmpt2plusg  23583  istgp2  23586  cnmpt2vsca  23690  cnmpt2ds  24350  divcn  24375  cnrehmeo  24460  htpycom  24483  htpyco1  24485  htpycc  24487  reparphti  24504  pcohtpylem  24526  cnmpt2ip  24756  cxpcn  26242  vmcn  29939  dipcn  29960  mndpluscn  32894  cvxsconn  34222  gg-cnrehmeo  35159  gg-reparphti  35160
  Copyright terms: Public domain W3C validator