Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt22f | Structured version Visualization version GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
cnmpt21.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
cnmpt2t.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
cnmpt22f.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
Ref | Expression |
---|---|
cnmpt22f | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt21.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | cnmpt21.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
3 | cnmpt21.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | |
4 | cnmpt2t.b | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | |
5 | cntop2 22392 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top) | |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Top) |
7 | toptopon2 22067 | . . 3 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
8 | 6, 7 | sylib 217 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
9 | cntop2 22392 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top) | |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ Top) |
11 | toptopon2 22067 | . . 3 ⊢ (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘∪ 𝑀)) | |
12 | 10, 11 | sylib 217 | . 2 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘∪ 𝑀)) |
13 | txtopon 22742 | . . . . . . 7 ⊢ ((𝐿 ∈ (TopOn‘∪ 𝐿) ∧ 𝑀 ∈ (TopOn‘∪ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) | |
14 | 8, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) |
15 | cnmpt22f.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) | |
16 | cntop2 22392 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ Top) |
18 | toptopon2 22067 | . . . . . . 7 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
19 | 17, 18 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
20 | cnf2 22400 | . . . . . 6 ⊢ (((𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) | |
21 | 14, 19, 15, 20 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) |
22 | 21 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (∪ 𝐿 × ∪ 𝑀)) |
23 | fnov 7405 | . . . 4 ⊢ (𝐹 Fn (∪ 𝐿 × ∪ 𝑀) ↔ 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) | |
24 | 22, 23 | sylib 217 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) |
25 | 24, 15 | eqeltrrd 2840 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
26 | oveq12 7284 | . 2 ⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵)) | |
27 | 1, 2, 3, 4, 8, 12, 25, 26 | cnmpt22 22825 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 × cxp 5587 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 ×t ctx 22711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cn 22378 df-tx 22713 |
This theorem is referenced by: cnmptcom 22829 cnmpt2plusg 23239 istgp2 23242 cnmpt2vsca 23346 cnmpt2ds 24006 divcn 24031 cnrehmeo 24116 htpycom 24139 htpyco1 24141 htpycc 24143 reparphti 24160 pcohtpylem 24182 cnmpt2ip 24412 cxpcn 25898 vmcn 29061 dipcn 29082 mndpluscn 31876 cvxsconn 33205 |
Copyright terms: Public domain | W3C validator |