MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Structured version   Visualization version   GIF version

Theorem cnmpt22f 23538
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt2t.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
cnmpt22f.f (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
Assertion
Ref Expression
cnmpt22f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt22f
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt2t.b . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
5 cntop2 23104 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
63, 5syl 17 . . 3 (𝜑𝐿 ∈ Top)
7 toptopon2 22781 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
86, 7sylib 218 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
9 cntop2 23104 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top)
104, 9syl 17 . . 3 (𝜑𝑀 ∈ Top)
11 toptopon2 22781 . . 3 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
1210, 11sylib 218 . 2 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
13 txtopon 23454 . . . . . . 7 ((𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝑀 ∈ (TopOn‘ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
148, 12, 13syl2anc 584 . . . . . 6 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
15 cnmpt22f.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
16 cntop2 23104 . . . . . . . 8 (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top)
1715, 16syl 17 . . . . . . 7 (𝜑𝑁 ∈ Top)
18 toptopon2 22781 . . . . . . 7 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1917, 18sylib 218 . . . . . 6 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
20 cnf2 23112 . . . . . 6 (((𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2114, 19, 15, 20syl3anc 1373 . . . . 5 (𝜑𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2221ffnd 6671 . . . 4 (𝜑𝐹 Fn ( 𝐿 × 𝑀))
23 fnov 7500 . . . 4 (𝐹 Fn ( 𝐿 × 𝑀) ↔ 𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2422, 23sylib 218 . . 3 (𝜑𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2524, 15eqeltrrd 2829 . 2 (𝜑 → (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
26 oveq12 7378 . 2 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵))
271, 2, 3, 4, 8, 12, 25, 26cnmpt22 23537 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4867   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  Topctop 22756  TopOnctopon 22773   Cn ccn 23087   ×t ctx 23423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17382  df-top 22757  df-topon 22774  df-bases 22809  df-cn 23090  df-tx 23425
This theorem is referenced by:  cnmptcom  23541  cnmpt2plusg  23951  istgp2  23954  cnmpt2vsca  24058  cnmpt2ds  24708  divcnOLD  24733  cnrehmeo  24827  cnrehmeoOLD  24828  htpycom  24851  htpyco1  24853  htpycc  24855  reparphti  24872  reparphtiOLD  24873  pcohtpylem  24895  cnmpt2ip  25124  cxpcnOLD  26631  vmcn  30601  dipcn  30622  mndpluscn  33889  cvxsconn  35203
  Copyright terms: Public domain W3C validator