MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Structured version   Visualization version   GIF version

Theorem cnmpt22f 21887
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt2t.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
cnmpt22f.f (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
Assertion
Ref Expression
cnmpt22f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt22f
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt2t.b . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
5 cntop2 21453 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
63, 5syl 17 . . 3 (𝜑𝐿 ∈ Top)
7 eqid 2777 . . . 4 𝐿 = 𝐿
87toptopon 21129 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
96, 8sylib 210 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
10 cntop2 21453 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top)
114, 10syl 17 . . 3 (𝜑𝑀 ∈ Top)
12 eqid 2777 . . . 4 𝑀 = 𝑀
1312toptopon 21129 . . 3 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
1411, 13sylib 210 . 2 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
15 txtopon 21803 . . . . . . 7 ((𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝑀 ∈ (TopOn‘ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
169, 14, 15syl2anc 579 . . . . . 6 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
17 cnmpt22f.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
18 cntop2 21453 . . . . . . . 8 (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top)
1917, 18syl 17 . . . . . . 7 (𝜑𝑁 ∈ Top)
20 eqid 2777 . . . . . . . 8 𝑁 = 𝑁
2120toptopon 21129 . . . . . . 7 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
2219, 21sylib 210 . . . . . 6 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
23 cnf2 21461 . . . . . 6 (((𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2416, 22, 17, 23syl3anc 1439 . . . . 5 (𝜑𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2524ffnd 6292 . . . 4 (𝜑𝐹 Fn ( 𝐿 × 𝑀))
26 fnov 7045 . . . 4 (𝐹 Fn ( 𝐿 × 𝑀) ↔ 𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2725, 26sylib 210 . . 3 (𝜑𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2827, 17eqeltrrd 2859 . 2 (𝜑 → (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
29 oveq12 6931 . 2 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵))
301, 2, 3, 4, 9, 14, 28, 29cnmpt22 21886 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106   cuni 4671   × cxp 5353   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924  Topctop 21105  TopOnctopon 21122   Cn ccn 21436   ×t ctx 21772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-map 8142  df-topgen 16490  df-top 21106  df-topon 21123  df-bases 21158  df-cn 21439  df-tx 21774
This theorem is referenced by:  cnmptcom  21890  cnmpt2plusg  22300  istgp2  22303  cnmpt2vsca  22406  cnmpt2ds  23054  divcn  23079  cnrehmeo  23160  htpycom  23183  htpyco1  23185  htpycc  23187  reparphti  23204  pcohtpylem  23226  cnmpt2ip  23454  cxpcn  24926  vmcn  28126  dipcn  28147  mndpluscn  30570  cvxsconn  31824
  Copyright terms: Public domain W3C validator