| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt22f | Structured version Visualization version GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmpt21.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| cnmpt2t.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| cnmpt22f.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
| Ref | Expression |
|---|---|
| cnmpt22f | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt21.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 3 | cnmpt21.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | |
| 4 | cnmpt2t.b | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | |
| 5 | cntop2 23128 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top) | |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 7 | toptopon2 22805 | . . 3 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 9 | cntop2 23128 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top) | |
| 10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ Top) |
| 11 | toptopon2 22805 | . . 3 ⊢ (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘∪ 𝑀)) | |
| 12 | 10, 11 | sylib 218 | . 2 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘∪ 𝑀)) |
| 13 | txtopon 23478 | . . . . . . 7 ⊢ ((𝐿 ∈ (TopOn‘∪ 𝐿) ∧ 𝑀 ∈ (TopOn‘∪ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) | |
| 14 | 8, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) |
| 15 | cnmpt22f.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) | |
| 16 | cntop2 23128 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ Top) |
| 18 | toptopon2 22805 | . . . . . . 7 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
| 19 | 17, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 20 | cnf2 23136 | . . . . . 6 ⊢ (((𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) | |
| 21 | 14, 19, 15, 20 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) |
| 22 | 21 | ffnd 6689 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (∪ 𝐿 × ∪ 𝑀)) |
| 23 | fnov 7520 | . . . 4 ⊢ (𝐹 Fn (∪ 𝐿 × ∪ 𝑀) ↔ 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) | |
| 24 | 22, 23 | sylib 218 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) |
| 25 | 24, 15 | eqeltrrd 2829 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
| 26 | oveq12 7396 | . 2 ⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵)) | |
| 27 | 1, 2, 3, 4, 8, 12, 25, 26 | cnmpt22 23561 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 × cxp 5636 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Topctop 22780 TopOnctopon 22797 Cn ccn 23111 ×t ctx 23447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 df-tx 23449 |
| This theorem is referenced by: cnmptcom 23565 cnmpt2plusg 23975 istgp2 23978 cnmpt2vsca 24082 cnmpt2ds 24732 divcnOLD 24757 cnrehmeo 24851 cnrehmeoOLD 24852 htpycom 24875 htpyco1 24877 htpycc 24879 reparphti 24896 reparphtiOLD 24897 pcohtpylem 24919 cnmpt2ip 25148 cxpcnOLD 26655 vmcn 30628 dipcn 30649 mndpluscn 33916 cvxsconn 35230 |
| Copyright terms: Public domain | W3C validator |