| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt22f | Structured version Visualization version GIF version | ||
| Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmpt21.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| cnmpt21.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| cnmpt21.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| cnmpt2t.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) |
| cnmpt22f.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
| Ref | Expression |
|---|---|
| cnmpt22f | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt21.k | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 3 | cnmpt21.a | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | |
| 4 | cnmpt2t.b | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | |
| 5 | cntop2 23156 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top) | |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐿 ∈ Top) |
| 7 | toptopon2 22833 | . . 3 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 9 | cntop2 23156 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top) | |
| 10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ Top) |
| 11 | toptopon2 22833 | . . 3 ⊢ (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘∪ 𝑀)) | |
| 12 | 10, 11 | sylib 218 | . 2 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘∪ 𝑀)) |
| 13 | txtopon 23506 | . . . . . . 7 ⊢ ((𝐿 ∈ (TopOn‘∪ 𝐿) ∧ 𝑀 ∈ (TopOn‘∪ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) | |
| 14 | 8, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀))) |
| 15 | cnmpt22f.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) | |
| 16 | cntop2 23156 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top) | |
| 17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ Top) |
| 18 | toptopon2 22833 | . . . . . . 7 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
| 19 | 17, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 20 | cnf2 23164 | . . . . . 6 ⊢ (((𝐿 ×t 𝑀) ∈ (TopOn‘(∪ 𝐿 × ∪ 𝑀)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) | |
| 21 | 14, 19, 15, 20 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐹:(∪ 𝐿 × ∪ 𝑀)⟶∪ 𝑁) |
| 22 | 21 | ffnd 6652 | . . . 4 ⊢ (𝜑 → 𝐹 Fn (∪ 𝐿 × ∪ 𝑀)) |
| 23 | fnov 7477 | . . . 4 ⊢ (𝐹 Fn (∪ 𝐿 × ∪ 𝑀) ↔ 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) | |
| 24 | 22, 23 | sylib 218 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤))) |
| 25 | 24, 15 | eqeltrrd 2832 | . 2 ⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) |
| 26 | oveq12 7355 | . 2 ⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵)) | |
| 27 | 1, 2, 3, 4, 8, 12, 25, 26 | cnmpt22 23589 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 × cxp 5612 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Topctop 22808 TopOnctopon 22825 Cn ccn 23139 ×t ctx 23475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-cn 23142 df-tx 23477 |
| This theorem is referenced by: cnmptcom 23593 cnmpt2plusg 24003 istgp2 24006 cnmpt2vsca 24110 cnmpt2ds 24759 divcnOLD 24784 cnrehmeo 24878 cnrehmeoOLD 24879 htpycom 24902 htpyco1 24904 htpycc 24906 reparphti 24923 reparphtiOLD 24924 pcohtpylem 24946 cnmpt2ip 25175 cxpcnOLD 26682 vmcn 30679 dipcn 30700 mndpluscn 33939 cvxsconn 35287 |
| Copyright terms: Public domain | W3C validator |