MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Structured version   Visualization version   GIF version

Theorem cnmpt22f 23704
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt2t.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
cnmpt22f.f (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
Assertion
Ref Expression
cnmpt22f (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt22f
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt21.k . 2 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt21.a . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
4 cnmpt2t.b . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
5 cntop2 23270 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
63, 5syl 17 . . 3 (𝜑𝐿 ∈ Top)
7 toptopon2 22945 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
86, 7sylib 218 . 2 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
9 cntop2 23270 . . . 4 ((𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀) → 𝑀 ∈ Top)
104, 9syl 17 . . 3 (𝜑𝑀 ∈ Top)
11 toptopon2 22945 . . 3 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
1210, 11sylib 218 . 2 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
13 txtopon 23620 . . . . . . 7 ((𝐿 ∈ (TopOn‘ 𝐿) ∧ 𝑀 ∈ (TopOn‘ 𝑀)) → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
148, 12, 13syl2anc 583 . . . . . 6 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)))
15 cnmpt22f.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
16 cntop2 23270 . . . . . . . 8 (𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁) → 𝑁 ∈ Top)
1715, 16syl 17 . . . . . . 7 (𝜑𝑁 ∈ Top)
18 toptopon2 22945 . . . . . . 7 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1917, 18sylib 218 . . . . . 6 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
20 cnf2 23278 . . . . . 6 (((𝐿 ×t 𝑀) ∈ (TopOn‘( 𝐿 × 𝑀)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁)) → 𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2114, 19, 15, 20syl3anc 1371 . . . . 5 (𝜑𝐹:( 𝐿 × 𝑀)⟶ 𝑁)
2221ffnd 6748 . . . 4 (𝜑𝐹 Fn ( 𝐿 × 𝑀))
23 fnov 7581 . . . 4 (𝐹 Fn ( 𝐿 × 𝑀) ↔ 𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2422, 23sylib 218 . . 3 (𝜑𝐹 = (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)))
2524, 15eqeltrrd 2845 . 2 (𝜑 → (𝑧 𝐿, 𝑤 𝑀 ↦ (𝑧𝐹𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))
26 oveq12 7457 . 2 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧𝐹𝑤) = (𝐴𝐹𝐵))
271, 2, 3, 4, 8, 12, 25, 26cnmpt22 23703 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   cuni 4931   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  Topctop 22920  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-tx 23591
This theorem is referenced by:  cnmptcom  23707  cnmpt2plusg  24117  istgp2  24120  cnmpt2vsca  24224  cnmpt2ds  24884  divcnOLD  24909  cnrehmeo  25003  cnrehmeoOLD  25004  htpycom  25027  htpyco1  25029  htpycc  25031  reparphti  25048  reparphtiOLD  25049  pcohtpylem  25071  cnmpt2ip  25301  cxpcnOLD  26806  vmcn  30731  dipcn  30752  mndpluscn  33872  cvxsconn  35211
  Copyright terms: Public domain W3C validator