MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Structured version   Visualization version   GIF version

Theorem cnmpt22f 23399
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt21.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
cnmpt21.a (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐴) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿))
cnmpt2t.b (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐡) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑀))
cnmpt22f.f (πœ‘ β†’ 𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁))
Assertion
Ref Expression
cnmpt22f (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ (𝐴𝐹𝐡)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑁))
Distinct variable groups:   π‘₯,𝑦,𝐹   π‘₯,𝐿,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝑋,𝑦   π‘₯,𝑀,𝑦   π‘₯,𝑁,𝑦   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐡(π‘₯,𝑦)   𝐽(π‘₯,𝑦)   𝐾(π‘₯,𝑦)

Proof of Theorem cnmpt22f
Dummy variables 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 cnmpt21.k . 2 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
3 cnmpt21.a . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐴) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿))
4 cnmpt2t.b . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐡) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑀))
5 cntop2 22965 . . . 4 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐴) ∈ ((𝐽 Γ—t 𝐾) Cn 𝐿) β†’ 𝐿 ∈ Top)
63, 5syl 17 . . 3 (πœ‘ β†’ 𝐿 ∈ Top)
7 toptopon2 22640 . . 3 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
86, 7sylib 217 . 2 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
9 cntop2 22965 . . . 4 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ 𝐡) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑀) β†’ 𝑀 ∈ Top)
104, 9syl 17 . . 3 (πœ‘ β†’ 𝑀 ∈ Top)
11 toptopon2 22640 . . 3 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOnβ€˜βˆͺ 𝑀))
1210, 11sylib 217 . 2 (πœ‘ β†’ 𝑀 ∈ (TopOnβ€˜βˆͺ 𝑀))
13 txtopon 23315 . . . . . . 7 ((𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿) ∧ 𝑀 ∈ (TopOnβ€˜βˆͺ 𝑀)) β†’ (𝐿 Γ—t 𝑀) ∈ (TopOnβ€˜(βˆͺ 𝐿 Γ— βˆͺ 𝑀)))
148, 12, 13syl2anc 582 . . . . . 6 (πœ‘ β†’ (𝐿 Γ—t 𝑀) ∈ (TopOnβ€˜(βˆͺ 𝐿 Γ— βˆͺ 𝑀)))
15 cnmpt22f.f . . . . . . . 8 (πœ‘ β†’ 𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁))
16 cntop2 22965 . . . . . . . 8 (𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁) β†’ 𝑁 ∈ Top)
1715, 16syl 17 . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ Top)
18 toptopon2 22640 . . . . . . 7 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁))
1917, 18sylib 217 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁))
20 cnf2 22973 . . . . . 6 (((𝐿 Γ—t 𝑀) ∈ (TopOnβ€˜(βˆͺ 𝐿 Γ— βˆͺ 𝑀)) ∧ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁) ∧ 𝐹 ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁)) β†’ 𝐹:(βˆͺ 𝐿 Γ— βˆͺ 𝑀)⟢βˆͺ 𝑁)
2114, 19, 15, 20syl3anc 1369 . . . . 5 (πœ‘ β†’ 𝐹:(βˆͺ 𝐿 Γ— βˆͺ 𝑀)⟢βˆͺ 𝑁)
2221ffnd 6717 . . . 4 (πœ‘ β†’ 𝐹 Fn (βˆͺ 𝐿 Γ— βˆͺ 𝑀))
23 fnov 7542 . . . 4 (𝐹 Fn (βˆͺ 𝐿 Γ— βˆͺ 𝑀) ↔ 𝐹 = (𝑧 ∈ βˆͺ 𝐿, 𝑀 ∈ βˆͺ 𝑀 ↦ (𝑧𝐹𝑀)))
2422, 23sylib 217 . . 3 (πœ‘ β†’ 𝐹 = (𝑧 ∈ βˆͺ 𝐿, 𝑀 ∈ βˆͺ 𝑀 ↦ (𝑧𝐹𝑀)))
2524, 15eqeltrrd 2832 . 2 (πœ‘ β†’ (𝑧 ∈ βˆͺ 𝐿, 𝑀 ∈ βˆͺ 𝑀 ↦ (𝑧𝐹𝑀)) ∈ ((𝐿 Γ—t 𝑀) Cn 𝑁))
26 oveq12 7420 . 2 ((𝑧 = 𝐴 ∧ 𝑀 = 𝐡) β†’ (𝑧𝐹𝑀) = (𝐴𝐹𝐡))
271, 2, 3, 4, 8, 12, 25, 26cnmpt22 23398 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ (𝐴𝐹𝐡)) ∈ ((𝐽 Γ—t 𝐾) Cn 𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  βˆͺ cuni 4907   Γ— cxp 5673   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413  Topctop 22615  TopOnctopon 22632   Cn ccn 22948   Γ—t ctx 23284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-topgen 17393  df-top 22616  df-topon 22633  df-bases 22669  df-cn 22951  df-tx 23286
This theorem is referenced by:  cnmptcom  23402  cnmpt2plusg  23812  istgp2  23815  cnmpt2vsca  23919  cnmpt2ds  24579  divcnOLD  24604  cnrehmeo  24698  cnrehmeoOLD  24699  htpycom  24722  htpyco1  24724  htpycc  24726  reparphti  24743  reparphtiOLD  24744  pcohtpylem  24766  cnmpt2ip  24996  cxpcn  26489  vmcn  30219  dipcn  30240  mndpluscn  33204  cvxsconn  34532
  Copyright terms: Public domain W3C validator