| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for ftc1 25971. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| ftc1.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
| ftc1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) |
| ftc1.j | ⊢ 𝐽 = (𝐿 ↾t ℝ) |
| ftc1.k | ⊢ 𝐾 = (𝐿 ↾t 𝐷) |
| ftc1.l | ⊢ 𝐿 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| ftc1lem3 | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.k | . . 3 ⊢ 𝐾 = (𝐿 ↾t 𝐷) | |
| 2 | ftc1.l | . . . . 5 ⊢ 𝐿 = (TopOpen‘ℂfld) | |
| 3 | 2 | cnfldtopon 24692 | . . . 4 ⊢ 𝐿 ∈ (TopOn‘ℂ) |
| 4 | ftc1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
| 5 | ax-resscn 11058 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 6 | 4, 5 | sstrdi 3942 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
| 7 | resttopon 23071 | . . . 4 ⊢ ((𝐿 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐿 ↾t 𝐷) ∈ (TopOn‘𝐷)) | |
| 8 | 3, 6, 7 | sylancr 587 | . . 3 ⊢ (𝜑 → (𝐿 ↾t 𝐷) ∈ (TopOn‘𝐷)) |
| 9 | 1, 8 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝐷)) |
| 10 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘ℂ)) |
| 11 | ftc1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) | |
| 12 | cnpf2 23160 | . 2 ⊢ ((𝐾 ∈ (TopOn‘𝐷) ∧ 𝐿 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) → 𝐹:𝐷⟶ℂ) | |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 ≤ cle 11142 (,)cioo 13240 [,]cicc 13243 ↾t crest 17319 TopOpenctopn 17320 ℂfldccnfld 21286 TopOnctopon 22820 CnP ccnp 23135 𝐿1cibl 25540 ∫citg 25541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-fz 13403 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-starv 17171 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-rest 17321 df-topn 17322 df-topgen 17342 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cnp 23138 df-xms 24230 df-ms 24231 |
| This theorem is referenced by: ftc1lem4 25968 ftc1lem5 25969 ftc1lem6 25970 ftc1 25971 |
| Copyright terms: Public domain | W3C validator |