Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ftc1lem3 | Structured version Visualization version GIF version |
Description: Lemma for ftc1 25086. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
Ref | Expression |
---|---|
ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
ftc1.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
ftc1.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) |
ftc1.j | ⊢ 𝐽 = (𝐿 ↾t ℝ) |
ftc1.k | ⊢ 𝐾 = (𝐿 ↾t 𝐷) |
ftc1.l | ⊢ 𝐿 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
ftc1lem3 | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc1.k | . . 3 ⊢ 𝐾 = (𝐿 ↾t 𝐷) | |
2 | ftc1.l | . . . . 5 ⊢ 𝐿 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 23827 | . . . 4 ⊢ 𝐿 ∈ (TopOn‘ℂ) |
4 | ftc1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℝ) | |
5 | ax-resscn 10834 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
6 | 4, 5 | sstrdi 3930 | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
7 | resttopon 22195 | . . . 4 ⊢ ((𝐿 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐿 ↾t 𝐷) ∈ (TopOn‘𝐷)) | |
8 | 3, 6, 7 | sylancr 590 | . . 3 ⊢ (𝜑 → (𝐿 ↾t 𝐷) ∈ (TopOn‘𝐷)) |
9 | 1, 8 | eqeltrid 2844 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝐷)) |
10 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘ℂ)) |
11 | ftc1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) | |
12 | cnpf2 22284 | . 2 ⊢ ((𝐾 ∈ (TopOn‘𝐷) ∧ 𝐿 ∈ (TopOn‘ℂ) ∧ 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶)) → 𝐹:𝐷⟶ℂ) | |
13 | 9, 10, 11, 12 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ⊆ wss 3884 class class class wbr 5070 ↦ cmpt 5152 ⟶wf 6411 ‘cfv 6415 (class class class)co 7252 ℂcc 10775 ℝcr 10776 ≤ cle 10916 (,)cioo 12983 [,]cicc 12986 ↾t crest 17023 TopOpenctopn 17024 ℂfldccnfld 20485 TopOnctopon 21942 CnP ccnp 22259 𝐿1cibl 24661 ∫citg 24662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-pre-sup 10855 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-fi 9075 df-sup 9106 df-inf 9107 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-div 11538 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-q 12593 df-rp 12635 df-xneg 12752 df-xadd 12753 df-xmul 12754 df-fz 13144 df-seq 13625 df-exp 13686 df-cj 14713 df-re 14714 df-im 14715 df-sqrt 14849 df-abs 14850 df-struct 16751 df-slot 16786 df-ndx 16798 df-base 16816 df-plusg 16876 df-mulr 16877 df-starv 16878 df-tset 16882 df-ple 16883 df-ds 16885 df-unif 16886 df-rest 17025 df-topn 17026 df-topgen 17046 df-psmet 20477 df-xmet 20478 df-met 20479 df-bl 20480 df-mopn 20481 df-cnfld 20486 df-top 21926 df-topon 21943 df-topsp 21965 df-bases 21979 df-cnp 22262 df-xms 23356 df-ms 23357 |
This theorem is referenced by: ftc1lem4 25083 ftc1lem5 25084 ftc1lem6 25085 ftc1 25086 |
Copyright terms: Public domain | W3C validator |