| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version | ||
| Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5627 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | cnvfi 9085 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
| 3 | dmfi 9219 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
| 5 | 1, 4 | eqeltrid 2835 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ◡ccnv 5615 dom cdm 5616 ran crn 5617 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-en 8870 df-dom 8871 df-fin 8873 |
| This theorem is referenced by: f1dmvrnfibi 9225 unirnffid 9231 abrexfi 9236 gsum2dlem1 19883 gsum2dlem2 19884 tsmsxplem1 24069 prdsmet 24286 itg1addlem4 25628 relfi 32580 imafi2 32691 elrgspnsubrunlem1 33212 elrgspnsubrunlem2 33213 cmpcref 33861 carsggect 34329 carsgclctunlem2 34330 carsgclctunlem3 34331 breprexplema 34641 ptrecube 37666 heicant 37701 mblfinlem1 37703 ftc1anclem3 37741 istotbnd3 37817 sstotbnd2 37820 sstotbnd 37821 totbndbnd 37835 cantnfub 43360 cantnfub2 43361 rnmptfi 45214 rnffi 45218 choicefi 45243 stoweidlem39 46083 stoweidlem59 46103 fourierdlem31 46182 fourierdlem42 46193 fourierdlem54 46204 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |