Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version |
Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5535 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | cnvfi 8839 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
3 | dmfi 8835 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
5 | 1, 4 | eqeltrid 2856 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ◡ccnv 5523 dom cdm 5524 ran crn 5525 Fincfn 8527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-1st 7693 df-2nd 7694 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-fin 8531 |
This theorem is referenced by: f1dmvrnfibi 8841 unirnffid 8849 abrexfi 8857 gsum2dlem1 19158 gsum2dlem2 19159 tsmsxplem1 22853 prdsmet 23072 relfi 30463 imafi2 30570 cmpcref 31321 carsggect 31804 carsgclctunlem2 31805 carsgclctunlem3 31806 breprexplema 32129 ptrecube 35337 heicant 35372 mblfinlem1 35374 ftc1anclem3 35412 istotbnd3 35489 sstotbnd2 35492 sstotbnd 35493 totbndbnd 35507 rnmptfi 42166 rnffi 42170 choicefi 42199 stoweidlem39 43047 stoweidlem59 43067 fourierdlem31 43146 fourierdlem42 43157 fourierdlem54 43168 aacllem 45720 |
Copyright terms: Public domain | W3C validator |