| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version | ||
| Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5634 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | cnvfi 9100 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
| 3 | dmfi 9244 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ◡ccnv 5622 dom cdm 5623 ran crn 5624 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1st 7931 df-2nd 7932 df-1o 8395 df-en 8880 df-dom 8881 df-fin 8883 |
| This theorem is referenced by: f1dmvrnfibi 9250 unirnffid 9256 abrexfi 9261 gsum2dlem1 19867 gsum2dlem2 19868 tsmsxplem1 24056 prdsmet 24274 itg1addlem4 25616 relfi 32564 imafi2 32668 elrgspnsubrunlem1 33200 elrgspnsubrunlem2 33201 cmpcref 33819 carsggect 34288 carsgclctunlem2 34289 carsgclctunlem3 34290 breprexplema 34600 ptrecube 37602 heicant 37637 mblfinlem1 37639 ftc1anclem3 37677 istotbnd3 37753 sstotbnd2 37756 sstotbnd 37757 totbndbnd 37771 cantnfub 43297 cantnfub2 43298 rnmptfi 45152 rnffi 45156 choicefi 45181 stoweidlem39 46024 stoweidlem59 46044 fourierdlem31 46123 fourierdlem42 46134 fourierdlem54 46145 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |