![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version |
Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5711 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | cnvfi 9243 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
3 | dmfi 9403 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
5 | 1, 4 | eqeltrid 2848 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ◡ccnv 5699 dom cdm 5700 ran crn 5701 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-en 9004 df-dom 9005 df-fin 9007 |
This theorem is referenced by: f1dmvrnfibi 9409 unirnffid 9415 abrexfi 9422 gsum2dlem1 20012 gsum2dlem2 20013 tsmsxplem1 24182 prdsmet 24401 itg1addlem4 25753 relfi 32624 imafi2 32725 cmpcref 33796 carsggect 34283 carsgclctunlem2 34284 carsgclctunlem3 34285 breprexplema 34607 ptrecube 37580 heicant 37615 mblfinlem1 37617 ftc1anclem3 37655 istotbnd3 37731 sstotbnd2 37734 sstotbnd 37735 totbndbnd 37749 cantnfub 43283 cantnfub2 43284 rnmptfi 45078 rnffi 45082 choicefi 45107 stoweidlem39 45960 stoweidlem59 45980 fourierdlem31 46059 fourierdlem42 46070 fourierdlem54 46081 aacllem 48895 |
Copyright terms: Public domain | W3C validator |