![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version |
Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5454 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | cnvfi 8652 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
3 | dmfi 8648 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
5 | 1, 4 | syl5eqel 2887 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2081 ◡ccnv 5442 dom cdm 5443 ran crn 5444 Fincfn 8357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-om 7437 df-1st 7545 df-2nd 7546 df-1o 7953 df-er 8139 df-en 8358 df-dom 8359 df-fin 8361 |
This theorem is referenced by: f1dmvrnfibi 8654 unirnffid 8662 abrexfi 8670 gsum2dlem1 18810 gsum2dlem2 18811 tsmsxplem1 22444 prdsmet 22663 relfi 30042 imafi2 30135 cmpcref 30731 carsggect 31193 carsgclctunlem2 31194 carsgclctunlem3 31195 breprexplema 31518 ptrecube 34442 heicant 34477 mblfinlem1 34479 ftc1anclem3 34519 istotbnd3 34600 sstotbnd2 34603 sstotbnd 34604 totbndbnd 34618 rnmptfi 40986 rnffi 40990 choicefi 41022 stoweidlem39 41886 stoweidlem59 41906 fourierdlem31 41985 fourierdlem42 41996 fourierdlem54 42007 aacllem 44402 |
Copyright terms: Public domain | W3C validator |