MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnfi Structured version   Visualization version   GIF version

Theorem rnfi 9224
Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
rnfi (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)

Proof of Theorem rnfi
StepHypRef Expression
1 df-rn 5627 . 2 ran 𝐴 = dom 𝐴
2 cnvfi 9085 . . 3 (𝐴 ∈ Fin → 𝐴 ∈ Fin)
3 dmfi 9219 . . 3 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
42, 3syl 17 . 2 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
51, 4eqeltrid 2835 1 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  ccnv 5615  dom cdm 5616  ran crn 5617  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873
This theorem is referenced by:  f1dmvrnfibi  9225  unirnffid  9231  abrexfi  9236  gsum2dlem1  19883  gsum2dlem2  19884  tsmsxplem1  24069  prdsmet  24286  itg1addlem4  25628  relfi  32580  imafi2  32691  elrgspnsubrunlem1  33212  elrgspnsubrunlem2  33213  cmpcref  33861  carsggect  34329  carsgclctunlem2  34330  carsgclctunlem3  34331  breprexplema  34641  ptrecube  37666  heicant  37701  mblfinlem1  37703  ftc1anclem3  37741  istotbnd3  37817  sstotbnd2  37820  sstotbnd  37821  totbndbnd  37835  cantnfub  43360  cantnfub2  43361  rnmptfi  45214  rnffi  45218  choicefi  45243  stoweidlem39  46083  stoweidlem59  46103  fourierdlem31  46182  fourierdlem42  46193  fourierdlem54  46204  aacllem  49839
  Copyright terms: Public domain W3C validator