| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnfi | Structured version Visualization version GIF version | ||
| Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| rnfi | ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5632 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | cnvfi 9094 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | |
| 3 | dmfi 9228 | . . 3 ⊢ (◡𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → dom ◡𝐴 ∈ Fin) |
| 5 | 1, 4 | eqeltrid 2837 | 1 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ◡ccnv 5620 dom cdm 5621 ran crn 5622 Fincfn 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-om 7805 df-1st 7929 df-2nd 7930 df-1o 8393 df-en 8878 df-dom 8879 df-fin 8881 |
| This theorem is referenced by: f1dmvrnfibi 9234 unirnffid 9240 abrexfi 9245 gsum2dlem1 19886 gsum2dlem2 19887 tsmsxplem1 24071 prdsmet 24288 itg1addlem4 25630 relfi 32586 imafi2 32699 elrgspnsubrunlem1 33223 elrgspnsubrunlem2 33224 cmpcref 33886 carsggect 34354 carsgclctunlem2 34355 carsgclctunlem3 34356 breprexplema 34666 ptrecube 37683 heicant 37718 mblfinlem1 37720 ftc1anclem3 37758 istotbnd3 37834 sstotbnd2 37837 sstotbnd 37838 totbndbnd 37852 cantnfub 43441 cantnfub2 43442 rnmptfi 45295 rnffi 45299 choicefi 45324 stoweidlem39 46164 stoweidlem59 46184 fourierdlem31 46263 fourierdlem42 46274 fourierdlem54 46285 aacllem 49929 |
| Copyright terms: Public domain | W3C validator |