Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat42 Structured version   Visualization version   GIF version

Theorem cvrat42 36652
Description: Commuted version of cvrat4 36651. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
cvrat4.b 𝐵 = (Base‘𝐾)
cvrat4.l = (le‘𝐾)
cvrat4.j = (join‘𝐾)
cvrat4.z 0 = (0.‘𝐾)
cvrat4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat42 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑟 𝑄))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   0 (𝑟)

Proof of Theorem cvrat42
StepHypRef Expression
1 cvrat4.b . . 3 𝐵 = (Base‘𝐾)
2 cvrat4.l . . 3 = (le‘𝐾)
3 cvrat4.j . . 3 = (join‘𝐾)
4 cvrat4.z . . 3 0 = (0.‘𝐾)
5 cvrat4.a . . 3 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5cvrat4 36651 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟))))
7 hllat 36571 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
87ad2antrr 725 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
9 simplr3 1214 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄𝐴)
101, 5atbase 36497 . . . . . . 7 (𝑄𝐴𝑄𝐵)
119, 10syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑄𝐵)
121, 5atbase 36497 . . . . . . 7 (𝑟𝐴𝑟𝐵)
1312adantl 485 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → 𝑟𝐵)
141, 3latjcom 17667 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑟𝐵) → (𝑄 𝑟) = (𝑟 𝑄))
158, 11, 13, 14syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → (𝑄 𝑟) = (𝑟 𝑄))
1615breq2d 5065 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → (𝑃 (𝑄 𝑟) ↔ 𝑃 (𝑟 𝑄)))
1716anbi2d 631 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → ((𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ (𝑟 𝑋𝑃 (𝑟 𝑄))))
1817rexbidva 3289 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑄 𝑟)) ↔ ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑟 𝑄))))
196, 18sylibd 242 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋0𝑃 (𝑋 𝑄)) → ∃𝑟𝐴 (𝑟 𝑋𝑃 (𝑟 𝑄))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134   class class class wbr 5053  cfv 6344  (class class class)co 7146  Basecbs 16481  lecple 16570  joincjn 17552  0.cp0 17645  Latclat 17653  Atomscatm 36471  HLchlt 36558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-proset 17536  df-poset 17554  df-plt 17566  df-lub 17582  df-glb 17583  df-join 17584  df-meet 17585  df-p0 17647  df-lat 17654  df-clat 17716  df-oposet 36384  df-ol 36386  df-oml 36387  df-covers 36474  df-ats 36475  df-atl 36506  df-cvlat 36530  df-hlat 36559
This theorem is referenced by:  pmapjat1  37061  djhcvat42  38623
  Copyright terms: Public domain W3C validator