| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrat42 | Structured version Visualization version GIF version | ||
| Description: Commuted version of cvrat4 39445. (Contributed by NM, 28-Jan-2012.) |
| Ref | Expression |
|---|---|
| cvrat4.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrat4.l | ⊢ ≤ = (le‘𝐾) |
| cvrat4.j | ⊢ ∨ = (join‘𝐾) |
| cvrat4.z | ⊢ 0 = (0.‘𝐾) |
| cvrat4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| cvrat42 | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cvrat4.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | cvrat4.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | cvrat4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 5 | cvrat4.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | cvrat4 39445 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 7 | hllat 39364 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 9 | simplr3 1218 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
| 10 | 1, 5 | atbase 39290 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
| 12 | 1, 5 | atbase 39290 | . . . . . . 7 ⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐵) |
| 14 | 1, 3 | latjcom 18492 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
| 15 | 8, 11, 13, 14 | syl3anc 1373 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
| 16 | 15 | breq2d 5155 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑟 ∨ 𝑄))) |
| 17 | 16 | anbi2d 630 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → ((𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| 18 | 17 | rexbidva 3177 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| 19 | 6, 18 | sylibd 239 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 0.cp0 18468 Latclat 18476 Atomscatm 39264 HLchlt 39351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 |
| This theorem is referenced by: pmapjat1 39855 djhcvat42 41417 |
| Copyright terms: Public domain | W3C validator |