| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrat42 | Structured version Visualization version GIF version | ||
| Description: Commuted version of cvrat4 39615. (Contributed by NM, 28-Jan-2012.) |
| Ref | Expression |
|---|---|
| cvrat4.b | ⊢ 𝐵 = (Base‘𝐾) |
| cvrat4.l | ⊢ ≤ = (le‘𝐾) |
| cvrat4.j | ⊢ ∨ = (join‘𝐾) |
| cvrat4.z | ⊢ 0 = (0.‘𝐾) |
| cvrat4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| cvrat42 | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cvrat4.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | cvrat4.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | cvrat4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 5 | cvrat4.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | cvrat4 39615 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
| 7 | hllat 39535 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 9 | simplr3 1218 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
| 10 | 1, 5 | atbase 39461 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
| 12 | 1, 5 | atbase 39461 | . . . . . . 7 ⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐵) |
| 14 | 1, 3 | latjcom 18361 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
| 15 | 8, 11, 13, 14 | syl3anc 1373 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
| 16 | 15 | breq2d 5107 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑟 ∨ 𝑄))) |
| 17 | 16 | anbi2d 630 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → ((𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| 18 | 17 | rexbidva 3155 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| 19 | 6, 18 | sylibd 239 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 lecple 17175 joincjn 18225 0.cp0 18335 Latclat 18345 Atomscatm 39435 HLchlt 39522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-lat 18346 df-clat 18413 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 |
| This theorem is referenced by: pmapjat1 40025 djhcvat42 41587 |
| Copyright terms: Public domain | W3C validator |