Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat42 Structured version   Visualization version   GIF version

Theorem cvrat42 38303
Description: Commuted version of cvrat4 38302. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
cvrat4.b 𝐡 = (Baseβ€˜πΎ)
cvrat4.l ≀ = (leβ€˜πΎ)
cvrat4.j ∨ = (joinβ€˜πΎ)
cvrat4.z 0 = (0.β€˜πΎ)
cvrat4.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvrat42 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 β‰  0 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
Distinct variable groups:   𝐴,π‘Ÿ   𝐡,π‘Ÿ   ∨ ,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   𝑋,π‘Ÿ
Allowed substitution hint:   0 (π‘Ÿ)

Proof of Theorem cvrat42
StepHypRef Expression
1 cvrat4.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cvrat4.l . . 3 ≀ = (leβ€˜πΎ)
3 cvrat4.j . . 3 ∨ = (joinβ€˜πΎ)
4 cvrat4.z . . 3 0 = (0.β€˜πΎ)
5 cvrat4.a . . 3 𝐴 = (Atomsβ€˜πΎ)
61, 2, 3, 4, 5cvrat4 38302 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 β‰  0 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ))))
7 hllat 38221 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
87ad2antrr 724 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ 𝐾 ∈ Lat)
9 simplr3 1217 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ 𝑄 ∈ 𝐴)
101, 5atbase 38147 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
119, 10syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ 𝑄 ∈ 𝐡)
121, 5atbase 38147 . . . . . . 7 (π‘Ÿ ∈ 𝐴 β†’ π‘Ÿ ∈ 𝐡)
1312adantl 482 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ π‘Ÿ ∈ 𝐡)
141, 3latjcom 18396 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐡 ∧ π‘Ÿ ∈ 𝐡) β†’ (𝑄 ∨ π‘Ÿ) = (π‘Ÿ ∨ 𝑄))
158, 11, 13, 14syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑄 ∨ π‘Ÿ) = (π‘Ÿ ∨ 𝑄))
1615breq2d 5159 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑃 ≀ (𝑄 ∨ π‘Ÿ) ↔ 𝑃 ≀ (π‘Ÿ ∨ 𝑄)))
1716anbi2d 629 . . 3 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ ((π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)) ↔ (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
1817rexbidva 3176 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)) ↔ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
196, 18sylibd 238 1 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 β‰  0 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  0.cp0 18372  Latclat 18380  Atomscatm 38121  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  pmapjat1  38712  djhcvat42  40274
  Copyright terms: Public domain W3C validator