Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrat42 | Structured version Visualization version GIF version |
Description: Commuted version of cvrat4 37457. (Contributed by NM, 28-Jan-2012.) |
Ref | Expression |
---|---|
cvrat4.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrat4.l | ⊢ ≤ = (le‘𝐾) |
cvrat4.j | ⊢ ∨ = (join‘𝐾) |
cvrat4.z | ⊢ 0 = (0.‘𝐾) |
cvrat4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvrat42 | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrat4.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvrat4.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | cvrat4.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | cvrat4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
5 | cvrat4.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 1, 2, 3, 4, 5 | cvrat4 37457 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)))) |
7 | hllat 37377 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
8 | 7 | ad2antrr 723 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ Lat) |
9 | simplr3 1216 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
10 | 1, 5 | atbase 37303 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
12 | 1, 5 | atbase 37303 | . . . . . . 7 ⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵) |
13 | 12 | adantl 482 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐵) |
14 | 1, 3 | latjcom 18165 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
15 | 8, 11, 13, 14 | syl3anc 1370 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → (𝑄 ∨ 𝑟) = (𝑟 ∨ 𝑄)) |
16 | 15 | breq2d 5086 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → (𝑃 ≤ (𝑄 ∨ 𝑟) ↔ 𝑃 ≤ (𝑟 ∨ 𝑄))) |
17 | 16 | anbi2d 629 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐴) → ((𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
18 | 17 | rexbidva 3225 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑄 ∨ 𝑟)) ↔ ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
19 | 6, 18 | sylibd 238 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≠ 0 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ∃𝑟 ∈ 𝐴 (𝑟 ≤ 𝑋 ∧ 𝑃 ≤ (𝑟 ∨ 𝑄)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 0.cp0 18141 Latclat 18149 Atomscatm 37277 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: pmapjat1 37867 djhcvat42 39429 |
Copyright terms: Public domain | W3C validator |