Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat42 Structured version   Visualization version   GIF version

Theorem cvrat42 38827
Description: Commuted version of cvrat4 38826. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
cvrat4.b 𝐡 = (Baseβ€˜πΎ)
cvrat4.l ≀ = (leβ€˜πΎ)
cvrat4.j ∨ = (joinβ€˜πΎ)
cvrat4.z 0 = (0.β€˜πΎ)
cvrat4.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvrat42 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 β‰  0 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
Distinct variable groups:   𝐴,π‘Ÿ   𝐡,π‘Ÿ   ∨ ,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   𝑋,π‘Ÿ
Allowed substitution hint:   0 (π‘Ÿ)

Proof of Theorem cvrat42
StepHypRef Expression
1 cvrat4.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cvrat4.l . . 3 ≀ = (leβ€˜πΎ)
3 cvrat4.j . . 3 ∨ = (joinβ€˜πΎ)
4 cvrat4.z . . 3 0 = (0.β€˜πΎ)
5 cvrat4.a . . 3 𝐴 = (Atomsβ€˜πΎ)
61, 2, 3, 4, 5cvrat4 38826 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 β‰  0 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ))))
7 hllat 38745 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
87ad2antrr 723 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ 𝐾 ∈ Lat)
9 simplr3 1214 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ 𝑄 ∈ 𝐴)
101, 5atbase 38671 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
119, 10syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ 𝑄 ∈ 𝐡)
121, 5atbase 38671 . . . . . . 7 (π‘Ÿ ∈ 𝐴 β†’ π‘Ÿ ∈ 𝐡)
1312adantl 481 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ π‘Ÿ ∈ 𝐡)
141, 3latjcom 18409 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐡 ∧ π‘Ÿ ∈ 𝐡) β†’ (𝑄 ∨ π‘Ÿ) = (π‘Ÿ ∨ 𝑄))
158, 11, 13, 14syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑄 ∨ π‘Ÿ) = (π‘Ÿ ∨ 𝑄))
1615breq2d 5153 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑃 ≀ (𝑄 ∨ π‘Ÿ) ↔ 𝑃 ≀ (π‘Ÿ ∨ 𝑄)))
1716anbi2d 628 . . 3 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ π‘Ÿ ∈ 𝐴) β†’ ((π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)) ↔ (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
1817rexbidva 3170 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (𝑄 ∨ π‘Ÿ)) ↔ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
196, 18sylibd 238 1 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 β‰  0 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (π‘Ÿ ≀ 𝑋 ∧ 𝑃 ≀ (π‘Ÿ ∨ 𝑄))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  lecple 17210  joincjn 18273  0.cp0 18385  Latclat 18393  Atomscatm 38645  HLchlt 38732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18257  df-poset 18275  df-plt 18292  df-lub 18308  df-glb 18309  df-join 18310  df-meet 18311  df-p0 18387  df-lat 18394  df-clat 18461  df-oposet 38558  df-ol 38560  df-oml 38561  df-covers 38648  df-ats 38649  df-atl 38680  df-cvlat 38704  df-hlat 38733
This theorem is referenced by:  pmapjat1  39236  djhcvat42  40798
  Copyright terms: Public domain W3C validator