Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmj Structured version   Visualization version   GIF version

Theorem 2llnmj 37574
Description: The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.)
Hypotheses
Ref Expression
2llnmj.j = (join‘𝐾)
2llnmj.m = (meet‘𝐾)
2llnmj.a 𝐴 = (Atoms‘𝐾)
2llnmj.n 𝑁 = (LLines‘𝐾)
2llnmj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnmj ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))

Proof of Theorem 2llnmj
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ HL)
2 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2llnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
42, 3llnbase 37523 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
543ad2ant2 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 ∈ (Base‘𝐾))
62, 3llnbase 37523 . . . 4 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
763ad2ant3 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑌 ∈ (Base‘𝐾))
8 2llnmj.j . . . 4 = (join‘𝐾)
9 2llnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2738 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 37434 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1370 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
14 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ∈ 𝐴)
15 simpl3 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑌𝑁)
16 hllat 37377 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2738 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 18183 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1159 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2llnmj.a . . . . 5 𝐴 = (Atoms‘𝐾)
2217, 10, 21, 3atcvrlln2 37533 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐴𝑌𝑁) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑁)
252, 9latmcl 18158 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1159 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1127 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3atcvrlln 37534 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
2927, 28sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
3024, 29mpbird 256 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝐴)
3123, 30impbida 798 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝐾 ∈ HL)
33 simpl2 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋𝑁)
34 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → (𝑋 𝑌) ∈ 𝑃)
352, 17, 8latlej1 18166 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1159 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2llnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
3917, 10, 3, 38llncvrlpln2 37571 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁 ∧ (𝑋 𝑌) ∈ 𝑃) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑁)
422, 8latjcl 18157 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1159 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1127 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38llncvrlpln 37572 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4644, 45sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4741, 46mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑃)
4840, 47impbida 798 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝑃𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 311 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  ccvr 37276  Atomscatm 37277  HLchlt 37364  LLinesclln 37505  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by:  2atmat  37575  dalem2  37675  dalemdea  37676  dalem22  37709  dalem23  37710  arglem1N  38204  cdleme16d  38295  cdleme20l2  38335
  Copyright terms: Public domain W3C validator