Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmj Structured version   Visualization version   GIF version

Theorem 2llnmj 39500
Description: The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.)
Hypotheses
Ref Expression
2llnmj.j = (join‘𝐾)
2llnmj.m = (meet‘𝐾)
2llnmj.a 𝐴 = (Atoms‘𝐾)
2llnmj.n 𝑁 = (LLines‘𝐾)
2llnmj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnmj ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))

Proof of Theorem 2llnmj
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ HL)
2 eqid 2734 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2llnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
42, 3llnbase 39449 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
543ad2ant2 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 ∈ (Base‘𝐾))
62, 3llnbase 39449 . . . 4 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
763ad2ant3 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑌 ∈ (Base‘𝐾))
8 2llnmj.j . . . 4 = (join‘𝐾)
9 2llnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2734 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 39360 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1372 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
14 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ∈ 𝐴)
15 simpl3 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑌𝑁)
16 hllat 39302 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2734 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 18460 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1160 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2llnmj.a . . . . 5 𝐴 = (Atoms‘𝐾)
2217, 10, 21, 3atcvrlln2 39459 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐴𝑌𝑁) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑁)
252, 9latmcl 18435 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1160 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3atcvrlln 39460 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
2927, 28sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
3024, 29mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝐴)
3123, 30impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝐾 ∈ HL)
33 simpl2 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋𝑁)
34 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → (𝑋 𝑌) ∈ 𝑃)
352, 17, 8latlej1 18443 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1160 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2llnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
3917, 10, 3, 38llncvrlpln2 39497 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁 ∧ (𝑋 𝑌) ∈ 𝑃) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑁)
422, 8latjcl 18434 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1160 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38llncvrlpln 39498 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4644, 45sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4741, 46mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑃)
4840, 47impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝑃𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 311 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5116  cfv 6527  (class class class)co 7399  Basecbs 17213  lecple 17263  joincjn 18308  meetcmee 18309  Latclat 18426  ccvr 39201  Atomscatm 39202  HLchlt 39289  LLinesclln 39431  LPlanesclpl 39432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-proset 18291  df-poset 18310  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-lat 18427  df-clat 18494  df-oposet 39115  df-ol 39117  df-oml 39118  df-covers 39205  df-ats 39206  df-atl 39237  df-cvlat 39261  df-hlat 39290  df-llines 39438  df-lplanes 39439
This theorem is referenced by:  2atmat  39501  dalem2  39601  dalemdea  39602  dalem22  39635  dalem23  39636  arglem1N  40130  cdleme16d  40221  cdleme20l2  40261
  Copyright terms: Public domain W3C validator