Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmj Structured version   Visualization version   GIF version

Theorem 2llnmj 39669
Description: The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.)
Hypotheses
Ref Expression
2llnmj.j = (join‘𝐾)
2llnmj.m = (meet‘𝐾)
2llnmj.a 𝐴 = (Atoms‘𝐾)
2llnmj.n 𝑁 = (LLines‘𝐾)
2llnmj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnmj ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))

Proof of Theorem 2llnmj
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ HL)
2 eqid 2731 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2llnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
42, 3llnbase 39618 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
543ad2ant2 1134 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 ∈ (Base‘𝐾))
62, 3llnbase 39618 . . . 4 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
763ad2ant3 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑌 ∈ (Base‘𝐾))
8 2llnmj.j . . . 4 = (join‘𝐾)
9 2llnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2731 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 39529 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
14 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ∈ 𝐴)
15 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑌𝑁)
16 hllat 39472 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2731 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 18371 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1160 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2llnmj.a . . . . 5 𝐴 = (Atoms‘𝐾)
2217, 10, 21, 3atcvrlln2 39628 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐴𝑌𝑁) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑁)
252, 9latmcl 18346 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1160 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3atcvrlln 39629 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
2927, 28sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
3024, 29mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝐴)
3123, 30impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝐾 ∈ HL)
33 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋𝑁)
34 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → (𝑋 𝑌) ∈ 𝑃)
352, 17, 8latlej1 18354 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1160 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2llnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
3917, 10, 3, 38llncvrlpln2 39666 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁 ∧ (𝑋 𝑌) ∈ 𝑃) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑁)
422, 8latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1160 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1128 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38llncvrlpln 39667 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4644, 45sylan 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4741, 46mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑃)
4840, 47impbida 800 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝑃𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 311 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  ccvr 39371  Atomscatm 39372  HLchlt 39459  LLinesclln 39600  LPlanesclpl 39601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608
This theorem is referenced by:  2atmat  39670  dalem2  39770  dalemdea  39771  dalem22  39804  dalem23  39805  arglem1N  40299  cdleme16d  40390  cdleme20l2  40430
  Copyright terms: Public domain W3C validator