Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmj Structured version   Visualization version   GIF version

Theorem 2llnmj 36695
Description: The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.)
Hypotheses
Ref Expression
2llnmj.j = (join‘𝐾)
2llnmj.m = (meet‘𝐾)
2llnmj.a 𝐴 = (Atoms‘𝐾)
2llnmj.n 𝑁 = (LLines‘𝐾)
2llnmj.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnmj ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))

Proof of Theorem 2llnmj
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝐾 ∈ HL)
2 eqid 2821 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 2llnmj.n . . . . 5 𝑁 = (LLines‘𝐾)
42, 3llnbase 36644 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
543ad2ant2 1130 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋 ∈ (Base‘𝐾))
62, 3llnbase 36644 . . . 4 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
763ad2ant3 1131 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑌 ∈ (Base‘𝐾))
8 2llnmj.j . . . 4 = (join‘𝐾)
9 2llnmj.m . . . 4 = (meet‘𝐾)
10 eqid 2821 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
112, 8, 9, 10cvrexch 36555 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
121, 5, 7, 11syl3anc 1367 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌)( ⋖ ‘𝐾)𝑌𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
13 simpl1 1187 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ HL)
14 simpr 487 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ∈ 𝐴)
15 simpl3 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝑌𝑁)
16 hllat 36498 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
17 eqid 2821 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
182, 17, 9latmle2 17686 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑌)
1916, 4, 6, 18syl3an 1156 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌)(le‘𝐾)𝑌)
2019adantr 483 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)(le‘𝐾)𝑌)
21 2llnmj.a . . . . 5 𝐴 = (Atoms‘𝐾)
2217, 10, 21, 3atcvrlln2 36654 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐴𝑌𝑁) ∧ (𝑋 𝑌)(le‘𝐾)𝑌) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
2313, 14, 15, 20, 22syl31anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌)( ⋖ ‘𝐾)𝑌)
24 simpl3 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → 𝑌𝑁)
252, 9latmcl 17661 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
2616, 4, 6, 25syl3an 1156 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
271, 26, 73jca 1124 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)))
282, 10, 21, 3atcvrlln 36655 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
2927, 28sylan 582 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 𝑌) ∈ 𝐴𝑌𝑁))
3024, 29mpbird 259 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌) → (𝑋 𝑌) ∈ 𝐴)
3123, 30impbida 799 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌)( ⋖ ‘𝐾)𝑌))
32 simpl1 1187 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝐾 ∈ HL)
33 simpl2 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋𝑁)
34 simpr 487 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → (𝑋 𝑌) ∈ 𝑃)
352, 17, 8latlej1 17669 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)(𝑋 𝑌))
3616, 4, 6, 35syl3an 1156 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → 𝑋(le‘𝐾)(𝑋 𝑌))
3736adantr 483 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋(le‘𝐾)(𝑋 𝑌))
38 2llnmj.p . . . . 5 𝑃 = (LPlanes‘𝐾)
3917, 10, 3, 38llncvrlpln2 36692 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁 ∧ (𝑋 𝑌) ∈ 𝑃) ∧ 𝑋(le‘𝐾)(𝑋 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
4032, 33, 34, 37, 39syl31anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋 𝑌) ∈ 𝑃) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑌))
41 simpl2 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → 𝑋𝑁)
422, 8latjcl 17660 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
4316, 4, 6, 42syl3an 1156 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌) ∈ (Base‘𝐾))
441, 5, 433jca 1124 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)))
452, 10, 3, 38llncvrlpln 36693 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4644, 45sylan 582 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋𝑁 ↔ (𝑋 𝑌) ∈ 𝑃))
4741, 46mpbid 234 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ 𝑋( ⋖ ‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑃)
4840, 47impbida 799 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝑃𝑋( ⋖ ‘𝐾)(𝑋 𝑌)))
4912, 31, 483bitr4d 313 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  lecple 16571  joincjn 17553  meetcmee 17554  Latclat 17654  ccvr 36397  Atomscatm 36398  HLchlt 36485  LLinesclln 36626  LPlanesclpl 36627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-lat 17655  df-clat 17717  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-llines 36633  df-lplanes 36634
This theorem is referenced by:  2atmat  36696  dalem2  36796  dalemdea  36797  dalem22  36830  dalem23  36831  arglem1N  37325  cdleme16d  37416  cdleme20l2  37456
  Copyright terms: Public domain W3C validator