Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem6 | Structured version Visualization version GIF version |
Description: Lemma for dath 37312. Analogue of dalem5 37243 for 𝑆. (Contributed by NM, 21-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem6.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem6.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem6.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem6.w | ⊢ 𝑊 = (𝑌 ∨ 𝐶) |
Ref | Expression |
---|---|
dalem6 | ⊢ (𝜑 → 𝑆 ≤ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | dalem6.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
6 | dalem6.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | dalemrot 37233 | . . 3 ⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))))) |
8 | biid 264 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆))))) | |
9 | dalem6.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
10 | eqid 2758 | . . . 4 ⊢ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑃) | |
11 | eqid 2758 | . . . 4 ⊢ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∨ 𝐶) = (((𝑄 ∨ 𝑅) ∨ 𝑃) ∨ 𝐶) | |
12 | 8, 2, 3, 4, 9, 10, 11 | dalem5 37243 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∈ 𝑂 ∧ ((𝑇 ∨ 𝑈) ∨ 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃) ∧ ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) ∧ (¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆) ∧ ¬ 𝐶 ≤ (𝑆 ∨ 𝑇)) ∧ (𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈) ∧ 𝐶 ≤ (𝑃 ∨ 𝑆)))) → 𝑆 ≤ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∨ 𝐶)) |
13 | 7, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ≤ (((𝑄 ∨ 𝑅) ∨ 𝑃) ∨ 𝐶)) |
14 | dalem6.w | . . 3 ⊢ 𝑊 = (𝑌 ∨ 𝐶) | |
15 | 1, 3, 4 | dalemqrprot 37224 | . . . . 5 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
16 | 5, 15 | eqtr4id 2812 | . . . 4 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
17 | 16 | oveq1d 7165 | . . 3 ⊢ (𝜑 → (𝑌 ∨ 𝐶) = (((𝑄 ∨ 𝑅) ∨ 𝑃) ∨ 𝐶)) |
18 | 14, 17 | syl5eq 2805 | . 2 ⊢ (𝜑 → 𝑊 = (((𝑄 ∨ 𝑅) ∨ 𝑃) ∨ 𝐶)) |
19 | 13, 18 | breqtrrd 5060 | 1 ⊢ (𝜑 → 𝑆 ≤ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 lecple 16630 joincjn 17620 Atomscatm 36839 HLchlt 36926 LPlanesclpl 37068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-lat 17722 df-clat 17784 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-llines 37074 df-lplanes 37075 |
This theorem is referenced by: dalem7 37245 dalem8 37246 |
Copyright terms: Public domain | W3C validator |