MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrass Structured version   Visualization version   GIF version

Theorem dvrass 18957
Description: An associative law for division. (divass 10957 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
dvrass.b 𝐵 = (Base‘𝑅)
dvrass.o 𝑈 = (Unit‘𝑅)
dvrass.d / = (/r𝑅)
dvrass.t · = (.r𝑅)
Assertion
Ref Expression
dvrass ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍)))

Proof of Theorem dvrass
StepHypRef Expression
1 simpl 474 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Ring)
2 simpr1 1248 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑋𝐵)
3 simpr2 1250 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑌𝐵)
4 simpr3 1252 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑍𝑈)
5 dvrass.o . . . . 5 𝑈 = (Unit‘𝑅)
6 eqid 2765 . . . . 5 (invr𝑅) = (invr𝑅)
7 dvrass.b . . . . 5 𝐵 = (Base‘𝑅)
85, 6, 7ringinvcl 18943 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝐵)
91, 4, 8syl2anc 579 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
10 dvrass.t . . . 4 · = (.r𝑅)
117, 10ringass 18831 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 · 𝑌) · ((invr𝑅)‘𝑍)) = (𝑋 · (𝑌 · ((invr𝑅)‘𝑍))))
121, 2, 3, 9, 11syl13anc 1491 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 · 𝑌) · ((invr𝑅)‘𝑍)) = (𝑋 · (𝑌 · ((invr𝑅)‘𝑍))))
137, 10ringcl 18828 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
14133adant3r3 1235 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 · 𝑌) ∈ 𝐵)
15 dvrass.d . . . 4 / = (/r𝑅)
167, 10, 5, 6, 15dvrval 18952 . . 3 (((𝑋 · 𝑌) ∈ 𝐵𝑍𝑈) → ((𝑋 · 𝑌) / 𝑍) = ((𝑋 · 𝑌) · ((invr𝑅)‘𝑍)))
1714, 4, 16syl2anc 579 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 · 𝑌) / 𝑍) = ((𝑋 · 𝑌) · ((invr𝑅)‘𝑍)))
187, 10, 5, 6, 15dvrval 18952 . . . 4 ((𝑌𝐵𝑍𝑈) → (𝑌 / 𝑍) = (𝑌 · ((invr𝑅)‘𝑍)))
193, 4, 18syl2anc 579 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑌 / 𝑍) = (𝑌 · ((invr𝑅)‘𝑍)))
2019oveq2d 6858 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 · (𝑌 / 𝑍)) = (𝑋 · (𝑌 · ((invr𝑅)‘𝑍))))
2112, 17, 203eqtr4d 2809 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cfv 6068  (class class class)co 6842  Basecbs 16130  .rcmulr 16215  Ringcrg 18814  Unitcui 18906  invrcinvr 18938  /rcdvr 18949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-minusg 17693  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950
This theorem is referenced by:  dvrcan3  18959  irredrmul  18974  dvrcan5  30240
  Copyright terms: Public domain W3C validator