Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvrcan1 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (divcan1 11572 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
dvrass.d | ⊢ / = (/r‘𝑅) |
dvrass.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvrcan1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvrass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
3 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
4 | eqid 2738 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
5 | dvrass.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
6 | 1, 2, 3, 4, 5 | dvrval 19842 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
7 | 6 | 3adant1 1128 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
8 | 7 | oveq1d 7270 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌)) |
9 | simp1 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
10 | simp2 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
11 | 3, 4, 1 | ringinvcl 19833 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
12 | 11 | 3adant2 1129 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
13 | 1, 3 | unitcl 19816 | . . . . 5 ⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵) |
14 | 13 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
15 | 1, 2 | ringass 19718 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
16 | 9, 10, 12, 14, 15 | syl13anc 1370 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
17 | eqid 2738 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
18 | 3, 4, 2, 17 | unitlinv 19834 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
19 | 18 | 3adant2 1129 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
20 | 19 | oveq2d 7271 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r‘𝑅))) |
21 | 1, 2, 17 | ringridm 19726 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (1r‘𝑅)) = 𝑋) |
22 | 21 | 3adant3 1130 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (1r‘𝑅)) = 𝑋) |
23 | 20, 22 | eqtrd 2778 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = 𝑋) |
24 | 16, 23 | eqtrd 2778 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = 𝑋) |
25 | 8, 24 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 1rcur 19652 Ringcrg 19698 Unitcui 19796 invrcinvr 19828 /rcdvr 19839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 |
This theorem is referenced by: dvreq1 19850 irredrmul 19864 isdrng2 19916 cnflddiv 20540 isarchiofld 31418 |
Copyright terms: Public domain | W3C validator |