![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrcan1 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (divcan1 11881 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrass.b | β’ π΅ = (Baseβπ ) |
dvrass.o | β’ π = (Unitβπ ) |
dvrass.d | β’ / = (/rβπ ) |
dvrass.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
dvrcan1 | β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π / π) Β· π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrass.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
2 | dvrass.t | . . . . 5 β’ Β· = (.rβπ ) | |
3 | dvrass.o | . . . . 5 β’ π = (Unitβπ ) | |
4 | eqid 2733 | . . . . 5 β’ (invrβπ ) = (invrβπ ) | |
5 | dvrass.d | . . . . 5 β’ / = (/rβπ ) | |
6 | 1, 2, 3, 4, 5 | dvrval 20217 | . . . 4 β’ ((π β π΅ β§ π β π) β (π / π) = (π Β· ((invrβπ )βπ))) |
7 | 6 | 3adant1 1131 | . . 3 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π / π) = (π Β· ((invrβπ )βπ))) |
8 | 7 | oveq1d 7424 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π / π) Β· π) = ((π Β· ((invrβπ )βπ)) Β· π)) |
9 | simp1 1137 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β π β Ring) | |
10 | simp2 1138 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β π β π΅) | |
11 | 3, 4, 1 | ringinvcl 20206 | . . . . 5 β’ ((π β Ring β§ π β π) β ((invrβπ )βπ) β π΅) |
12 | 11 | 3adant2 1132 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((invrβπ )βπ) β π΅) |
13 | 1, 3 | unitcl 20189 | . . . . 5 β’ (π β π β π β π΅) |
14 | 13 | 3ad2ant3 1136 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β π β π΅) |
15 | 1, 2 | ringass 20076 | . . . 4 β’ ((π β Ring β§ (π β π΅ β§ ((invrβπ )βπ) β π΅ β§ π β π΅)) β ((π Β· ((invrβπ )βπ)) Β· π) = (π Β· (((invrβπ )βπ) Β· π))) |
16 | 9, 10, 12, 14, 15 | syl13anc 1373 | . . 3 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π Β· ((invrβπ )βπ)) Β· π) = (π Β· (((invrβπ )βπ) Β· π))) |
17 | eqid 2733 | . . . . . . 7 β’ (1rβπ ) = (1rβπ ) | |
18 | 3, 4, 2, 17 | unitlinv 20207 | . . . . . 6 β’ ((π β Ring β§ π β π) β (((invrβπ )βπ) Β· π) = (1rβπ )) |
19 | 18 | 3adant2 1132 | . . . . 5 β’ ((π β Ring β§ π β π΅ β§ π β π) β (((invrβπ )βπ) Β· π) = (1rβπ )) |
20 | 19 | oveq2d 7425 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π Β· (((invrβπ )βπ) Β· π)) = (π Β· (1rβπ ))) |
21 | 1, 2, 17 | ringridm 20087 | . . . . 5 β’ ((π β Ring β§ π β π΅) β (π Β· (1rβπ )) = π) |
22 | 21 | 3adant3 1133 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π Β· (1rβπ )) = π) |
23 | 20, 22 | eqtrd 2773 | . . 3 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π Β· (((invrβπ )βπ) Β· π)) = π) |
24 | 16, 23 | eqtrd 2773 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π Β· ((invrβπ )βπ)) Β· π) = π) |
25 | 8, 24 | eqtrd 2773 | 1 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π / π) Β· π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 .rcmulr 17198 1rcur 20004 Ringcrg 20056 Unitcui 20169 invrcinvr 20201 /rcdvr 20214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 |
This theorem is referenced by: dvreq1 20225 irredrmul 20241 lringuplu 20314 isdrng2 20371 cnflddiv 20975 isarchiofld 32435 |
Copyright terms: Public domain | W3C validator |