![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrcan1 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (divcan1 11932 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
dvrass.d | ⊢ / = (/r‘𝑅) |
dvrass.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvrcan1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvrass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
3 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
4 | eqid 2726 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
5 | dvrass.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
6 | 1, 2, 3, 4, 5 | dvrval 20385 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
7 | 6 | 3adant1 1127 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
8 | 7 | oveq1d 7439 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌)) |
9 | simp1 1133 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
10 | simp2 1134 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
11 | 3, 4, 1 | ringinvcl 20374 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
12 | 11 | 3adant2 1128 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
13 | 1, 3 | unitcl 20357 | . . . . 5 ⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵) |
14 | 13 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
15 | 1, 2 | ringass 20236 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
16 | 9, 10, 12, 14, 15 | syl13anc 1369 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
17 | eqid 2726 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
18 | 3, 4, 2, 17 | unitlinv 20375 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
19 | 18 | 3adant2 1128 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
20 | 19 | oveq2d 7440 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r‘𝑅))) |
21 | 1, 2, 17 | ringridm 20249 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (1r‘𝑅)) = 𝑋) |
22 | 21 | 3adant3 1129 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (1r‘𝑅)) = 𝑋) |
23 | 20, 22 | eqtrd 2766 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = 𝑋) |
24 | 16, 23 | eqtrd 2766 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = 𝑋) |
25 | 8, 24 | eqtrd 2766 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 .rcmulr 17267 1rcur 20164 Ringcrg 20216 Unitcui 20337 invrcinvr 20369 /rcdvr 20382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-dvr 20383 |
This theorem is referenced by: dvreq1 20393 irredrmul 20409 lringuplu 20526 isdrng2 20721 cnflddiv 21392 cnflddivOLD 21393 isarchiofld 33195 ply1dg1rt 33451 |
Copyright terms: Public domain | W3C validator |