MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrcan1 Structured version   Visualization version   GIF version

Theorem dvrcan1 20374
Description: A cancellation law for division. (divcan1 11910 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
dvrass.b 𝐵 = (Base‘𝑅)
dvrass.o 𝑈 = (Unit‘𝑅)
dvrass.d / = (/r𝑅)
dvrass.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)

Proof of Theorem dvrcan1
StepHypRef Expression
1 dvrass.b . . . . 5 𝐵 = (Base‘𝑅)
2 dvrass.t . . . . 5 · = (.r𝑅)
3 dvrass.o . . . . 5 𝑈 = (Unit‘𝑅)
4 eqid 2736 . . . . 5 (invr𝑅) = (invr𝑅)
5 dvrass.d . . . . 5 / = (/r𝑅)
61, 2, 3, 4, 5dvrval 20368 . . . 4 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
763adant1 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
87oveq1d 7425 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌))
9 simp1 1136 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ Ring)
10 simp2 1137 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑋𝐵)
113, 4, 1ringinvcl 20357 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝐵)
12113adant2 1131 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝐵)
131, 3unitcl 20340 . . . . 5 (𝑌𝑈𝑌𝐵)
14133ad2ant3 1135 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝐵)
151, 2ringass 20218 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)))
169, 10, 12, 14, 15syl13anc 1374 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)))
17 eqid 2736 . . . . . . 7 (1r𝑅) = (1r𝑅)
183, 4, 2, 17unitlinv 20358 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (((invr𝑅)‘𝑌) · 𝑌) = (1r𝑅))
19183adant2 1131 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (((invr𝑅)‘𝑌) · 𝑌) = (1r𝑅))
2019oveq2d 7426 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r𝑅)))
211, 2, 17ringridm 20235 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (1r𝑅)) = 𝑋)
22213adant3 1132 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
2320, 22eqtrd 2771 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (((invr𝑅)‘𝑌) · 𝑌)) = 𝑋)
2416, 23eqtrd 2771 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · ((invr𝑅)‘𝑌)) · 𝑌) = 𝑋)
258, 24eqtrd 2771 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  1rcur 20146  Ringcrg 20198  Unitcui 20320  invrcinvr 20352  /rcdvr 20365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366
This theorem is referenced by:  dvreq1  20376  irredrmul  20392  lringuplu  20509  isdrng2  20708  cnflddiv  21368  cnflddivOLD  21369  isarchiofld  33344  ply1dg1rt  33597
  Copyright terms: Public domain W3C validator