![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrcan1 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (divcan1 11882 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrass.b | β’ π΅ = (Baseβπ ) |
dvrass.o | β’ π = (Unitβπ ) |
dvrass.d | β’ / = (/rβπ ) |
dvrass.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
dvrcan1 | β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π / π) Β· π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrass.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
2 | dvrass.t | . . . . 5 β’ Β· = (.rβπ ) | |
3 | dvrass.o | . . . . 5 β’ π = (Unitβπ ) | |
4 | eqid 2726 | . . . . 5 β’ (invrβπ ) = (invrβπ ) | |
5 | dvrass.d | . . . . 5 β’ / = (/rβπ ) | |
6 | 1, 2, 3, 4, 5 | dvrval 20302 | . . . 4 β’ ((π β π΅ β§ π β π) β (π / π) = (π Β· ((invrβπ )βπ))) |
7 | 6 | 3adant1 1127 | . . 3 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π / π) = (π Β· ((invrβπ )βπ))) |
8 | 7 | oveq1d 7419 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π / π) Β· π) = ((π Β· ((invrβπ )βπ)) Β· π)) |
9 | simp1 1133 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β π β Ring) | |
10 | simp2 1134 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β π β π΅) | |
11 | 3, 4, 1 | ringinvcl 20291 | . . . . 5 β’ ((π β Ring β§ π β π) β ((invrβπ )βπ) β π΅) |
12 | 11 | 3adant2 1128 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((invrβπ )βπ) β π΅) |
13 | 1, 3 | unitcl 20274 | . . . . 5 β’ (π β π β π β π΅) |
14 | 13 | 3ad2ant3 1132 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β π β π΅) |
15 | 1, 2 | ringass 20155 | . . . 4 β’ ((π β Ring β§ (π β π΅ β§ ((invrβπ )βπ) β π΅ β§ π β π΅)) β ((π Β· ((invrβπ )βπ)) Β· π) = (π Β· (((invrβπ )βπ) Β· π))) |
16 | 9, 10, 12, 14, 15 | syl13anc 1369 | . . 3 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π Β· ((invrβπ )βπ)) Β· π) = (π Β· (((invrβπ )βπ) Β· π))) |
17 | eqid 2726 | . . . . . . 7 β’ (1rβπ ) = (1rβπ ) | |
18 | 3, 4, 2, 17 | unitlinv 20292 | . . . . . 6 β’ ((π β Ring β§ π β π) β (((invrβπ )βπ) Β· π) = (1rβπ )) |
19 | 18 | 3adant2 1128 | . . . . 5 β’ ((π β Ring β§ π β π΅ β§ π β π) β (((invrβπ )βπ) Β· π) = (1rβπ )) |
20 | 19 | oveq2d 7420 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π Β· (((invrβπ )βπ) Β· π)) = (π Β· (1rβπ ))) |
21 | 1, 2, 17 | ringridm 20166 | . . . . 5 β’ ((π β Ring β§ π β π΅) β (π Β· (1rβπ )) = π) |
22 | 21 | 3adant3 1129 | . . . 4 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π Β· (1rβπ )) = π) |
23 | 20, 22 | eqtrd 2766 | . . 3 β’ ((π β Ring β§ π β π΅ β§ π β π) β (π Β· (((invrβπ )βπ) Β· π)) = π) |
24 | 16, 23 | eqtrd 2766 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π Β· ((invrβπ )βπ)) Β· π) = π) |
25 | 8, 24 | eqtrd 2766 | 1 β’ ((π β Ring β§ π β π΅ β§ π β π) β ((π / π) Β· π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6536 (class class class)co 7404 Basecbs 17150 .rcmulr 17204 1rcur 20083 Ringcrg 20135 Unitcui 20254 invrcinvr 20286 /rcdvr 20299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-dvr 20300 |
This theorem is referenced by: dvreq1 20310 irredrmul 20326 lringuplu 20441 isdrng2 20598 cnflddiv 21284 cnflddivOLD 21285 isarchiofld 32937 |
Copyright terms: Public domain | W3C validator |