MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdivmuldivd Structured version   Visualization version   GIF version

Theorem rdivmuldivd 20332
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
rdivmuldivd.p · = (.r𝑅)
rdivmuldivd.r (𝜑𝑅 ∈ CRing)
rdivmuldivd.a (𝜑𝑋𝐵)
rdivmuldivd.b (𝜑𝑌𝑈)
rdivmuldivd.c (𝜑𝑍𝐵)
rdivmuldivd.d (𝜑𝑊𝑈)
Assertion
Ref Expression
rdivmuldivd (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))

Proof of Theorem rdivmuldivd
StepHypRef Expression
1 rdivmuldivd.a . . . 4 (𝜑𝑋𝐵)
2 rdivmuldivd.b . . . 4 (𝜑𝑌𝑈)
3 dvrdir.b . . . . . 6 𝐵 = (Base‘𝑅)
4 rdivmuldivd.p . . . . . 6 · = (.r𝑅)
5 dvrdir.u . . . . . 6 𝑈 = (Unit‘𝑅)
6 eqid 2731 . . . . . 6 (invr𝑅) = (invr𝑅)
7 dvrdir.t . . . . . 6 / = (/r𝑅)
83, 4, 5, 6, 7dvrval 20322 . . . . 5 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
98oveq1d 7361 . . . 4 ((𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
101, 2, 9syl2anc 584 . . 3 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
11 rdivmuldivd.r . . . . 5 (𝜑𝑅 ∈ CRing)
12 crngring 20164 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
143, 5unitss 20295 . . . . 5 𝑈𝐵
155, 6unitinvcl 20309 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
1613, 2, 15syl2anc 584 . . . . 5 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝑈)
1714, 16sselid 3932 . . . 4 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝐵)
18 rdivmuldivd.c . . . . 5 (𝜑𝑍𝐵)
19 rdivmuldivd.d . . . . 5 (𝜑𝑊𝑈)
203, 5, 7dvrcl 20323 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1373 . . . 4 (𝜑 → (𝑍 / 𝑊) ∈ 𝐵)
223, 4ringass 20172 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
2313, 1, 17, 21, 22syl13anc 1374 . . 3 (𝜑 → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
243, 4crngcom 20170 . . . . 5 ((𝑅 ∈ CRing ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵) → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2511, 17, 21, 24syl3anc 1373 . . . 4 (𝜑 → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2625oveq2d 7362 . . 3 (𝜑 → (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
2710, 23, 263eqtrd 2770 . 2 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
28 eqid 2731 . . . . . . . 8 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
295, 28unitgrp 20302 . . . . . . 7 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
3013, 29syl 17 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
315, 28unitgrpbas 20301 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
32 eqid 2731 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
335, 28, 6invrfval 20308 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
3431, 32, 33grpinvadd 18931 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑊𝑈) → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
3530, 2, 19, 34syl3anc 1373 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
36 eqid 2731 . . . . . . . . 9 (mulGrp‘(𝑅s 𝑈)) = (mulGrp‘(𝑅s 𝑈))
375fvexi 6836 . . . . . . . . . 10 𝑈 ∈ V
38 eqid 2731 . . . . . . . . . . 11 (𝑅s 𝑈) = (𝑅s 𝑈)
3938, 4ressmulr 17211 . . . . . . . . . 10 (𝑈 ∈ V → · = (.r‘(𝑅s 𝑈)))
4037, 39ax-mp 5 . . . . . . . . 9 · = (.r‘(𝑅s 𝑈))
4136, 40mgpplusg 20063 . . . . . . . 8 · = (+g‘(mulGrp‘(𝑅s 𝑈)))
42 eqid 2731 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4338, 42mgpress 20069 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 ∈ V) → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4413, 37, 43sylancl 586 . . . . . . . . 9 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4544fveq2d 6826 . . . . . . . 8 (𝜑 → (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
4641, 45eqtr4id 2785 . . . . . . 7 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
4746oveqd 7363 . . . . . 6 (𝜑 → (𝑌 · 𝑊) = (𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))
4847fveq2d 6826 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)))
4946oveqd 7363 . . . . 5 (𝜑 → (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
5035, 48, 493eqtr4d 2776 . . . 4 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)))
5150oveq2d 7362 . . 3 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
523, 4ringcl 20169 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
5313, 1, 18, 52syl3anc 1373 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
545, 4unitmulcl 20299 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑊𝑈) → (𝑌 · 𝑊) ∈ 𝑈)
5513, 2, 19, 54syl3anc 1373 . . . 4 (𝜑 → (𝑌 · 𝑊) ∈ 𝑈)
563, 4, 5, 6, 7dvrval 20322 . . . 4 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑊) ∈ 𝑈) → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
5753, 55, 56syl2anc 584 . . 3 (𝜑 → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
585, 6unitinvcl 20309 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑊𝑈) → ((invr𝑅)‘𝑊) ∈ 𝑈)
5913, 19, 58syl2anc 584 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝑈)
6014, 59sselid 3932 . . . . . . 7 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝐵)
613, 4ringass 20172 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵)) → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6213, 1, 18, 60, 61syl13anc 1374 . . . . . 6 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
633, 4, 5, 6, 7dvrval 20322 . . . . . . . 8 ((𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6418, 19, 63syl2anc 584 . . . . . . 7 (𝜑 → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6564oveq2d 7362 . . . . . 6 (𝜑 → (𝑋 · (𝑍 / 𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6662, 65eqtr4d 2769 . . . . 5 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 / 𝑊)))
6766oveq1d 7361 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)))
683, 4ringass 20172 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑋 · 𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
6913, 53, 60, 17, 68syl13anc 1374 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
703, 4ringass 20172 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7113, 1, 21, 17, 70syl13anc 1374 . . . 4 (𝜑 → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7267, 69, 713eqtr3rd 2775 . . 3 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
7351, 57, 723eqtr4rd 2777 . 2 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
7427, 73eqtrd 2766 1 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Grpcgrp 18846  mulGrpcmgp 20059  Ringcrg 20152  CRingccrg 20153  Unitcui 20274  invrcinvr 20306  /rcdvr 20319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320
This theorem is referenced by:  qqhrhm  34000
  Copyright terms: Public domain W3C validator