MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdivmuldivd Structured version   Visualization version   GIF version

Theorem rdivmuldivd 20378
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
rdivmuldivd.p · = (.r𝑅)
rdivmuldivd.r (𝜑𝑅 ∈ CRing)
rdivmuldivd.a (𝜑𝑋𝐵)
rdivmuldivd.b (𝜑𝑌𝑈)
rdivmuldivd.c (𝜑𝑍𝐵)
rdivmuldivd.d (𝜑𝑊𝑈)
Assertion
Ref Expression
rdivmuldivd (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))

Proof of Theorem rdivmuldivd
StepHypRef Expression
1 rdivmuldivd.a . . . 4 (𝜑𝑋𝐵)
2 rdivmuldivd.b . . . 4 (𝜑𝑌𝑈)
3 dvrdir.b . . . . . 6 𝐵 = (Base‘𝑅)
4 rdivmuldivd.p . . . . . 6 · = (.r𝑅)
5 dvrdir.u . . . . . 6 𝑈 = (Unit‘𝑅)
6 eqid 2736 . . . . . 6 (invr𝑅) = (invr𝑅)
7 dvrdir.t . . . . . 6 / = (/r𝑅)
83, 4, 5, 6, 7dvrval 20368 . . . . 5 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
98oveq1d 7425 . . . 4 ((𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
101, 2, 9syl2anc 584 . . 3 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
11 rdivmuldivd.r . . . . 5 (𝜑𝑅 ∈ CRing)
12 crngring 20210 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
143, 5unitss 20341 . . . . 5 𝑈𝐵
155, 6unitinvcl 20355 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
1613, 2, 15syl2anc 584 . . . . 5 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝑈)
1714, 16sselid 3961 . . . 4 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝐵)
18 rdivmuldivd.c . . . . 5 (𝜑𝑍𝐵)
19 rdivmuldivd.d . . . . 5 (𝜑𝑊𝑈)
203, 5, 7dvrcl 20369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1373 . . . 4 (𝜑 → (𝑍 / 𝑊) ∈ 𝐵)
223, 4ringass 20218 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
2313, 1, 17, 21, 22syl13anc 1374 . . 3 (𝜑 → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
243, 4crngcom 20216 . . . . 5 ((𝑅 ∈ CRing ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵) → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2511, 17, 21, 24syl3anc 1373 . . . 4 (𝜑 → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2625oveq2d 7426 . . 3 (𝜑 → (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
2710, 23, 263eqtrd 2775 . 2 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
28 eqid 2736 . . . . . . . 8 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
295, 28unitgrp 20348 . . . . . . 7 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
3013, 29syl 17 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
315, 28unitgrpbas 20347 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
32 eqid 2736 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
335, 28, 6invrfval 20354 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
3431, 32, 33grpinvadd 19006 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑊𝑈) → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
3530, 2, 19, 34syl3anc 1373 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
36 eqid 2736 . . . . . . . . 9 (mulGrp‘(𝑅s 𝑈)) = (mulGrp‘(𝑅s 𝑈))
375fvexi 6895 . . . . . . . . . 10 𝑈 ∈ V
38 eqid 2736 . . . . . . . . . . 11 (𝑅s 𝑈) = (𝑅s 𝑈)
3938, 4ressmulr 17326 . . . . . . . . . 10 (𝑈 ∈ V → · = (.r‘(𝑅s 𝑈)))
4037, 39ax-mp 5 . . . . . . . . 9 · = (.r‘(𝑅s 𝑈))
4136, 40mgpplusg 20109 . . . . . . . 8 · = (+g‘(mulGrp‘(𝑅s 𝑈)))
42 eqid 2736 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4338, 42mgpress 20115 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 ∈ V) → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4413, 37, 43sylancl 586 . . . . . . . . 9 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4544fveq2d 6885 . . . . . . . 8 (𝜑 → (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
4641, 45eqtr4id 2790 . . . . . . 7 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
4746oveqd 7427 . . . . . 6 (𝜑 → (𝑌 · 𝑊) = (𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))
4847fveq2d 6885 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)))
4946oveqd 7427 . . . . 5 (𝜑 → (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
5035, 48, 493eqtr4d 2781 . . . 4 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)))
5150oveq2d 7426 . . 3 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
523, 4ringcl 20215 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
5313, 1, 18, 52syl3anc 1373 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
545, 4unitmulcl 20345 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑊𝑈) → (𝑌 · 𝑊) ∈ 𝑈)
5513, 2, 19, 54syl3anc 1373 . . . 4 (𝜑 → (𝑌 · 𝑊) ∈ 𝑈)
563, 4, 5, 6, 7dvrval 20368 . . . 4 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑊) ∈ 𝑈) → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
5753, 55, 56syl2anc 584 . . 3 (𝜑 → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
585, 6unitinvcl 20355 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑊𝑈) → ((invr𝑅)‘𝑊) ∈ 𝑈)
5913, 19, 58syl2anc 584 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝑈)
6014, 59sselid 3961 . . . . . . 7 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝐵)
613, 4ringass 20218 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵)) → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6213, 1, 18, 60, 61syl13anc 1374 . . . . . 6 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
633, 4, 5, 6, 7dvrval 20368 . . . . . . . 8 ((𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6418, 19, 63syl2anc 584 . . . . . . 7 (𝜑 → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6564oveq2d 7426 . . . . . 6 (𝜑 → (𝑋 · (𝑍 / 𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6662, 65eqtr4d 2774 . . . . 5 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 / 𝑊)))
6766oveq1d 7425 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)))
683, 4ringass 20218 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑋 · 𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
6913, 53, 60, 17, 68syl13anc 1374 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
703, 4ringass 20218 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7113, 1, 21, 17, 70syl13anc 1374 . . . 4 (𝜑 → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7267, 69, 713eqtr3rd 2780 . . 3 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
7351, 57, 723eqtr4rd 2782 . 2 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
7427, 73eqtrd 2771 1 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  +gcplusg 17276  .rcmulr 17277  Grpcgrp 18921  mulGrpcmgp 20105  Ringcrg 20198  CRingccrg 20199  Unitcui 20320  invrcinvr 20352  /rcdvr 20365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366
This theorem is referenced by:  qqhrhm  34025
  Copyright terms: Public domain W3C validator