Step | Hyp | Ref
| Expression |
1 | | rdivmuldivd.a |
. . . 4
β’ (π β π β π΅) |
2 | | rdivmuldivd.b |
. . . 4
β’ (π β π β π) |
3 | | dvrdir.b |
. . . . . 6
β’ π΅ = (Baseβπ
) |
4 | | rdivmuldivd.p |
. . . . . 6
β’ Β· =
(.rβπ
) |
5 | | dvrdir.u |
. . . . . 6
β’ π = (Unitβπ
) |
6 | | eqid 2732 |
. . . . . 6
β’
(invrβπ
) = (invrβπ
) |
7 | | dvrdir.t |
. . . . . 6
β’ / =
(/rβπ
) |
8 | 3, 4, 5, 6, 7 | dvrval 20209 |
. . . . 5
β’ ((π β π΅ β§ π β π) β (π / π) = (π Β·
((invrβπ
)βπ))) |
9 | 8 | oveq1d 7420 |
. . . 4
β’ ((π β π΅ β§ π β π) β ((π / π) Β· (π / π)) = ((π Β·
((invrβπ
)βπ)) Β· (π / π))) |
10 | 1, 2, 9 | syl2anc 584 |
. . 3
β’ (π β ((π / π) Β· (π / π)) = ((π Β·
((invrβπ
)βπ)) Β· (π / π))) |
11 | | rdivmuldivd.r |
. . . . 5
β’ (π β π
β CRing) |
12 | | crngring 20061 |
. . . . 5
β’ (π
β CRing β π
β Ring) |
13 | 11, 12 | syl 17 |
. . . 4
β’ (π β π
β Ring) |
14 | 3, 5 | unitss 20182 |
. . . . 5
β’ π β π΅ |
15 | 5, 6 | unitinvcl 20196 |
. . . . . 6
β’ ((π
β Ring β§ π β π) β ((invrβπ
)βπ) β π) |
16 | 13, 2, 15 | syl2anc 584 |
. . . . 5
β’ (π β
((invrβπ
)βπ) β π) |
17 | 14, 16 | sselid 3979 |
. . . 4
β’ (π β
((invrβπ
)βπ) β π΅) |
18 | | rdivmuldivd.c |
. . . . 5
β’ (π β π β π΅) |
19 | | rdivmuldivd.d |
. . . . 5
β’ (π β π β π) |
20 | 3, 5, 7 | dvrcl 20210 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π) β (π / π) β π΅) |
21 | 13, 18, 19, 20 | syl3anc 1371 |
. . . 4
β’ (π β (π / π) β π΅) |
22 | 3, 4 | ringass 20069 |
. . . 4
β’ ((π
β Ring β§ (π β π΅ β§ ((invrβπ
)βπ) β π΅ β§ (π / π) β π΅)) β ((π Β·
((invrβπ
)βπ)) Β· (π / π)) = (π Β·
(((invrβπ
)βπ) Β· (π / π)))) |
23 | 13, 1, 17, 21, 22 | syl13anc 1372 |
. . 3
β’ (π β ((π Β·
((invrβπ
)βπ)) Β· (π / π)) = (π Β·
(((invrβπ
)βπ) Β· (π / π)))) |
24 | 3, 4 | crngcom 20067 |
. . . . 5
β’ ((π
β CRing β§
((invrβπ
)βπ) β π΅ β§ (π / π) β π΅) β (((invrβπ
)βπ) Β· (π / π)) = ((π / π) Β·
((invrβπ
)βπ))) |
25 | 11, 17, 21, 24 | syl3anc 1371 |
. . . 4
β’ (π β
(((invrβπ
)βπ) Β· (π / π)) = ((π / π) Β·
((invrβπ
)βπ))) |
26 | 25 | oveq2d 7421 |
. . 3
β’ (π β (π Β·
(((invrβπ
)βπ) Β· (π / π))) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
27 | 10, 23, 26 | 3eqtrd 2776 |
. 2
β’ (π β ((π / π) Β· (π / π)) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
28 | | eqid 2732 |
. . . . . . . 8
β’
((mulGrpβπ
)
βΎs π) =
((mulGrpβπ
)
βΎs π) |
29 | 5, 28 | unitgrp 20189 |
. . . . . . 7
β’ (π
β Ring β
((mulGrpβπ
)
βΎs π)
β Grp) |
30 | 13, 29 | syl 17 |
. . . . . 6
β’ (π β ((mulGrpβπ
) βΎs π) β Grp) |
31 | 5, 28 | unitgrpbas 20188 |
. . . . . . 7
β’ π =
(Baseβ((mulGrpβπ
) βΎs π)) |
32 | | eqid 2732 |
. . . . . . 7
β’
(+gβ((mulGrpβπ
) βΎs π)) =
(+gβ((mulGrpβπ
) βΎs π)) |
33 | 5, 28, 6 | invrfval 20195 |
. . . . . . 7
β’
(invrβπ
) =
(invgβ((mulGrpβπ
) βΎs π)) |
34 | 31, 32, 33 | grpinvadd 18897 |
. . . . . 6
β’
((((mulGrpβπ
)
βΎs π)
β Grp β§ π β
π β§ π β π) β ((invrβπ
)β(π(+gβ((mulGrpβπ
) βΎs π))π)) = (((invrβπ
)βπ)(+gβ((mulGrpβπ
) βΎs π))((invrβπ
)βπ))) |
35 | 30, 2, 19, 34 | syl3anc 1371 |
. . . . 5
β’ (π β
((invrβπ
)β(π(+gβ((mulGrpβπ
) βΎs π))π)) = (((invrβπ
)βπ)(+gβ((mulGrpβπ
) βΎs π))((invrβπ
)βπ))) |
36 | | eqid 2732 |
. . . . . . . . 9
β’
(mulGrpβ(π
βΎs π)) =
(mulGrpβ(π
βΎs π)) |
37 | 5 | fvexi 6902 |
. . . . . . . . . 10
β’ π β V |
38 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π
βΎs π) = (π
βΎs π) |
39 | 38, 4 | ressmulr 17248 |
. . . . . . . . . 10
β’ (π β V β Β· =
(.rβ(π
βΎs π))) |
40 | 37, 39 | ax-mp 5 |
. . . . . . . . 9
β’ Β· =
(.rβ(π
βΎs π)) |
41 | 36, 40 | mgpplusg 19985 |
. . . . . . . 8
β’ Β· =
(+gβ(mulGrpβ(π
βΎs π))) |
42 | | eqid 2732 |
. . . . . . . . . . 11
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
43 | 38, 42 | mgpress 19996 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β V) β
((mulGrpβπ
)
βΎs π) =
(mulGrpβ(π
βΎs π))) |
44 | 13, 37, 43 | sylancl 586 |
. . . . . . . . 9
β’ (π β ((mulGrpβπ
) βΎs π) = (mulGrpβ(π
βΎs π))) |
45 | 44 | fveq2d 6892 |
. . . . . . . 8
β’ (π β
(+gβ((mulGrpβπ
) βΎs π)) =
(+gβ(mulGrpβ(π
βΎs π)))) |
46 | 41, 45 | eqtr4id 2791 |
. . . . . . 7
β’ (π β Β· =
(+gβ((mulGrpβπ
) βΎs π))) |
47 | 46 | oveqd 7422 |
. . . . . 6
β’ (π β (π Β· π) = (π(+gβ((mulGrpβπ
) βΎs π))π)) |
48 | 47 | fveq2d 6892 |
. . . . 5
β’ (π β
((invrβπ
)β(π Β· π)) = ((invrβπ
)β(π(+gβ((mulGrpβπ
) βΎs π))π))) |
49 | 46 | oveqd 7422 |
. . . . 5
β’ (π β
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)) = (((invrβπ
)βπ)(+gβ((mulGrpβπ
) βΎs π))((invrβπ
)βπ))) |
50 | 35, 48, 49 | 3eqtr4d 2782 |
. . . 4
β’ (π β
((invrβπ
)β(π Β· π)) = (((invrβπ
)βπ) Β·
((invrβπ
)βπ))) |
51 | 50 | oveq2d 7421 |
. . 3
β’ (π β ((π Β· π) Β·
((invrβπ
)β(π Β· π))) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
52 | 3, 4 | ringcl 20066 |
. . . . 5
β’ ((π
β Ring β§ π β π΅ β§ π β π΅) β (π Β· π) β π΅) |
53 | 13, 1, 18, 52 | syl3anc 1371 |
. . . 4
β’ (π β (π Β· π) β π΅) |
54 | 5, 4 | unitmulcl 20186 |
. . . . 5
β’ ((π
β Ring β§ π β π β§ π β π) β (π Β· π) β π) |
55 | 13, 2, 19, 54 | syl3anc 1371 |
. . . 4
β’ (π β (π Β· π) β π) |
56 | 3, 4, 5, 6, 7 | dvrval 20209 |
. . . 4
β’ (((π Β· π) β π΅ β§ (π Β· π) β π) β ((π Β· π) / (π Β· π)) = ((π Β· π) Β·
((invrβπ
)β(π Β· π)))) |
57 | 53, 55, 56 | syl2anc 584 |
. . 3
β’ (π β ((π Β· π) / (π Β· π)) = ((π Β· π) Β·
((invrβπ
)β(π Β· π)))) |
58 | 5, 6 | unitinvcl 20196 |
. . . . . . . . 9
β’ ((π
β Ring β§ π β π) β ((invrβπ
)βπ) β π) |
59 | 13, 19, 58 | syl2anc 584 |
. . . . . . . 8
β’ (π β
((invrβπ
)βπ) β π) |
60 | 14, 59 | sselid 3979 |
. . . . . . 7
β’ (π β
((invrβπ
)βπ) β π΅) |
61 | 3, 4 | ringass 20069 |
. . . . . . 7
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ ((invrβπ
)βπ) β π΅)) β ((π Β· π) Β·
((invrβπ
)βπ)) = (π Β· (π Β·
((invrβπ
)βπ)))) |
62 | 13, 1, 18, 60, 61 | syl13anc 1372 |
. . . . . 6
β’ (π β ((π Β· π) Β·
((invrβπ
)βπ)) = (π Β· (π Β·
((invrβπ
)βπ)))) |
63 | 3, 4, 5, 6, 7 | dvrval 20209 |
. . . . . . . 8
β’ ((π β π΅ β§ π β π) β (π / π) = (π Β·
((invrβπ
)βπ))) |
64 | 18, 19, 63 | syl2anc 584 |
. . . . . . 7
β’ (π β (π / π) = (π Β·
((invrβπ
)βπ))) |
65 | 64 | oveq2d 7421 |
. . . . . 6
β’ (π β (π Β· (π / π)) = (π Β· (π Β·
((invrβπ
)βπ)))) |
66 | 62, 65 | eqtr4d 2775 |
. . . . 5
β’ (π β ((π Β· π) Β·
((invrβπ
)βπ)) = (π Β· (π / π))) |
67 | 66 | oveq1d 7420 |
. . . 4
β’ (π β (((π Β· π) Β·
((invrβπ
)βπ)) Β·
((invrβπ
)βπ)) = ((π Β· (π / π)) Β·
((invrβπ
)βπ))) |
68 | 3, 4 | ringass 20069 |
. . . . 5
β’ ((π
β Ring β§ ((π Β· π) β π΅ β§ ((invrβπ
)βπ) β π΅ β§ ((invrβπ
)βπ) β π΅)) β (((π Β· π) Β·
((invrβπ
)βπ)) Β·
((invrβπ
)βπ)) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
69 | 13, 53, 60, 17, 68 | syl13anc 1372 |
. . . 4
β’ (π β (((π Β· π) Β·
((invrβπ
)βπ)) Β·
((invrβπ
)βπ)) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
70 | 3, 4 | ringass 20069 |
. . . . 5
β’ ((π
β Ring β§ (π β π΅ β§ (π / π) β π΅ β§ ((invrβπ
)βπ) β π΅)) β ((π Β· (π / π)) Β·
((invrβπ
)βπ)) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
71 | 13, 1, 21, 17, 70 | syl13anc 1372 |
. . . 4
β’ (π β ((π Β· (π / π)) Β·
((invrβπ
)βπ)) = (π Β· ((π / π) Β·
((invrβπ
)βπ)))) |
72 | 67, 69, 71 | 3eqtr3rd 2781 |
. . 3
β’ (π β (π Β· ((π / π) Β·
((invrβπ
)βπ))) = ((π Β· π) Β·
(((invrβπ
)βπ) Β·
((invrβπ
)βπ)))) |
73 | 51, 57, 72 | 3eqtr4rd 2783 |
. 2
β’ (π β (π Β· ((π / π) Β·
((invrβπ
)βπ))) = ((π Β· π) / (π Β· π))) |
74 | 27, 73 | eqtrd 2772 |
1
β’ (π β ((π / π) Β· (π / π)) = ((π Β· π) / (π Β· π))) |