Proof of Theorem rdivmuldivd
| Step | Hyp | Ref
| Expression |
| 1 | | rdivmuldivd.a |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 2 | | rdivmuldivd.b |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| 3 | | dvrdir.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | rdivmuldivd.p |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 5 | | dvrdir.u |
. . . . . 6
⊢ 𝑈 = (Unit‘𝑅) |
| 6 | | eqid 2736 |
. . . . . 6
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 7 | | dvrdir.t |
. . . . . 6
⊢ / =
(/r‘𝑅) |
| 8 | 3, 4, 5, 6, 7 | dvrval 20368 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 ·
((invr‘𝑅)‘𝑌))) |
| 9 | 8 | oveq1d 7425 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 ·
((invr‘𝑅)‘𝑌)) · (𝑍 / 𝑊))) |
| 10 | 1, 2, 9 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 ·
((invr‘𝑅)‘𝑌)) · (𝑍 / 𝑊))) |
| 11 | | rdivmuldivd.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 12 | | crngring 20210 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 13 | 11, 12 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 14 | 3, 5 | unitss 20341 |
. . . . 5
⊢ 𝑈 ⊆ 𝐵 |
| 15 | 5, 6 | unitinvcl 20355 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝑈) |
| 16 | 13, 2, 15 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((invr‘𝑅)‘𝑌) ∈ 𝑈) |
| 17 | 14, 16 | sselid 3961 |
. . . 4
⊢ (𝜑 →
((invr‘𝑅)‘𝑌) ∈ 𝐵) |
| 18 | | rdivmuldivd.c |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 19 | | rdivmuldivd.d |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝑈) |
| 20 | 3, 5, 7 | dvrcl 20369 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝑈) → (𝑍 / 𝑊) ∈ 𝐵) |
| 21 | 13, 18, 19, 20 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑍 / 𝑊) ∈ 𝐵) |
| 22 | 3, 4 | ringass 20218 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵)) → ((𝑋 ·
((invr‘𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 ·
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)))) |
| 23 | 13, 1, 17, 21, 22 | syl13anc 1374 |
. . 3
⊢ (𝜑 → ((𝑋 ·
((invr‘𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 ·
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)))) |
| 24 | 3, 4 | crngcom 20216 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧
((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵) → (((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) |
| 25 | 11, 17, 21, 24 | syl3anc 1373 |
. . . 4
⊢ (𝜑 →
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) |
| 26 | 25 | oveq2d 7426 |
. . 3
⊢ (𝜑 → (𝑋 ·
(((invr‘𝑅)‘𝑌) · (𝑍 / 𝑊))) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 27 | 10, 23, 26 | 3eqtrd 2775 |
. 2
⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 28 | | eqid 2736 |
. . . . . . . 8
⊢
((mulGrp‘𝑅)
↾s 𝑈) =
((mulGrp‘𝑅)
↾s 𝑈) |
| 29 | 5, 28 | unitgrp 20348 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp) |
| 30 | 13, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
| 31 | 5, 28 | unitgrpbas 20347 |
. . . . . . 7
⊢ 𝑈 =
(Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 32 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘((mulGrp‘𝑅) ↾s 𝑈)) =
(+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 33 | 5, 28, 6 | invrfval 20354 |
. . . . . . 7
⊢
(invr‘𝑅) =
(invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 34 | 31, 32, 33 | grpinvadd 19006 |
. . . . . 6
⊢
((((mulGrp‘𝑅)
↾s 𝑈)
∈ Grp ∧ 𝑌 ∈
𝑈 ∧ 𝑊 ∈ 𝑈) → ((invr‘𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr‘𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr‘𝑅)‘𝑌))) |
| 35 | 30, 2, 19, 34 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 →
((invr‘𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr‘𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr‘𝑅)‘𝑌))) |
| 36 | | eqid 2736 |
. . . . . . . . 9
⊢
(mulGrp‘(𝑅
↾s 𝑈)) =
(mulGrp‘(𝑅
↾s 𝑈)) |
| 37 | 5 | fvexi 6895 |
. . . . . . . . . 10
⊢ 𝑈 ∈ V |
| 38 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑅 ↾s 𝑈) = (𝑅 ↾s 𝑈) |
| 39 | 38, 4 | ressmulr 17326 |
. . . . . . . . . 10
⊢ (𝑈 ∈ V → · =
(.r‘(𝑅
↾s 𝑈))) |
| 40 | 37, 39 | ax-mp 5 |
. . . . . . . . 9
⊢ · =
(.r‘(𝑅
↾s 𝑈)) |
| 41 | 36, 40 | mgpplusg 20109 |
. . . . . . . 8
⊢ · =
(+g‘(mulGrp‘(𝑅 ↾s 𝑈))) |
| 42 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 43 | 38, 42 | mgpress 20115 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ V) →
((mulGrp‘𝑅)
↾s 𝑈) =
(mulGrp‘(𝑅
↾s 𝑈))) |
| 44 | 13, 37, 43 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅 ↾s 𝑈))) |
| 45 | 44 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝜑 →
(+g‘((mulGrp‘𝑅) ↾s 𝑈)) =
(+g‘(mulGrp‘(𝑅 ↾s 𝑈)))) |
| 46 | 41, 45 | eqtr4id 2790 |
. . . . . . 7
⊢ (𝜑 → · =
(+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 47 | 46 | oveqd 7427 |
. . . . . 6
⊢ (𝜑 → (𝑌 · 𝑊) = (𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) |
| 48 | 47 | fveq2d 6885 |
. . . . 5
⊢ (𝜑 →
((invr‘𝑅)‘(𝑌 · 𝑊)) = ((invr‘𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))) |
| 49 | 46 | oveqd 7427 |
. . . . 5
⊢ (𝜑 →
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)) = (((invr‘𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr‘𝑅)‘𝑌))) |
| 50 | 35, 48, 49 | 3eqtr4d 2781 |
. . . 4
⊢ (𝜑 →
((invr‘𝑅)‘(𝑌 · 𝑊)) = (((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌))) |
| 51 | 50 | oveq2d 7426 |
. . 3
⊢ (𝜑 → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘(𝑌 · 𝑊))) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 52 | 3, 4 | ringcl 20215 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 53 | 13, 1, 18, 52 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
| 54 | 5, 4 | unitmulcl 20345 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈) → (𝑌 · 𝑊) ∈ 𝑈) |
| 55 | 13, 2, 19, 54 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑌 · 𝑊) ∈ 𝑈) |
| 56 | 3, 4, 5, 6, 7 | dvrval 20368 |
. . . 4
⊢ (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑊) ∈ 𝑈) → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) ·
((invr‘𝑅)‘(𝑌 · 𝑊)))) |
| 57 | 53, 55, 56 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) ·
((invr‘𝑅)‘(𝑌 · 𝑊)))) |
| 58 | 5, 6 | unitinvcl 20355 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑊 ∈ 𝑈) → ((invr‘𝑅)‘𝑊) ∈ 𝑈) |
| 59 | 13, 19, 58 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 →
((invr‘𝑅)‘𝑊) ∈ 𝑈) |
| 60 | 14, 59 | sselid 3961 |
. . . . . . 7
⊢ (𝜑 →
((invr‘𝑅)‘𝑊) ∈ 𝐵) |
| 61 | 3, 4 | ringass 20218 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑊) ∈ 𝐵)) → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) = (𝑋 · (𝑍 ·
((invr‘𝑅)‘𝑊)))) |
| 62 | 13, 1, 18, 60, 61 | syl13anc 1374 |
. . . . . 6
⊢ (𝜑 → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) = (𝑋 · (𝑍 ·
((invr‘𝑅)‘𝑊)))) |
| 63 | 3, 4, 5, 6, 7 | dvrval 20368 |
. . . . . . . 8
⊢ ((𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝑈) → (𝑍 / 𝑊) = (𝑍 ·
((invr‘𝑅)‘𝑊))) |
| 64 | 18, 19, 63 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑍 / 𝑊) = (𝑍 ·
((invr‘𝑅)‘𝑊))) |
| 65 | 64 | oveq2d 7426 |
. . . . . 6
⊢ (𝜑 → (𝑋 · (𝑍 / 𝑊)) = (𝑋 · (𝑍 ·
((invr‘𝑅)‘𝑊)))) |
| 66 | 62, 65 | eqtr4d 2774 |
. . . . 5
⊢ (𝜑 → ((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) = (𝑋 · (𝑍 / 𝑊))) |
| 67 | 66 | oveq1d 7425 |
. . . 4
⊢ (𝜑 → (((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) ·
((invr‘𝑅)‘𝑌)) = ((𝑋 · (𝑍 / 𝑊)) ·
((invr‘𝑅)‘𝑌))) |
| 68 | 3, 4 | ringass 20218 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑋 · 𝑍) ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑊) ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵)) → (((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) ·
((invr‘𝑅)‘𝑌)) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 69 | 13, 53, 60, 17, 68 | syl13anc 1374 |
. . . 4
⊢ (𝜑 → (((𝑋 · 𝑍) ·
((invr‘𝑅)‘𝑊)) ·
((invr‘𝑅)‘𝑌)) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 70 | 3, 4 | ringass 20218 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵)) → ((𝑋 · (𝑍 / 𝑊)) ·
((invr‘𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 71 | 13, 1, 21, 17, 70 | syl13anc 1374 |
. . . 4
⊢ (𝜑 → ((𝑋 · (𝑍 / 𝑊)) ·
((invr‘𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 72 | 67, 69, 71 | 3eqtr3rd 2780 |
. . 3
⊢ (𝜑 → (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) = ((𝑋 · 𝑍) ·
(((invr‘𝑅)‘𝑊) ·
((invr‘𝑅)‘𝑌)))) |
| 73 | 51, 57, 72 | 3eqtr4rd 2782 |
. 2
⊢ (𝜑 → (𝑋 · ((𝑍 / 𝑊) ·
((invr‘𝑅)‘𝑌))) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) |
| 74 | 27, 73 | eqtrd 2771 |
1
⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) |