MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdivmuldivd Structured version   Visualization version   GIF version

Theorem rdivmuldivd 20220
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
rdivmuldivd.p · = (.r𝑅)
rdivmuldivd.r (𝜑𝑅 ∈ CRing)
rdivmuldivd.a (𝜑𝑋𝐵)
rdivmuldivd.b (𝜑𝑌𝑈)
rdivmuldivd.c (𝜑𝑍𝐵)
rdivmuldivd.d (𝜑𝑊𝑈)
Assertion
Ref Expression
rdivmuldivd (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))

Proof of Theorem rdivmuldivd
StepHypRef Expression
1 rdivmuldivd.a . . . 4 (𝜑𝑋𝐵)
2 rdivmuldivd.b . . . 4 (𝜑𝑌𝑈)
3 dvrdir.b . . . . . 6 𝐵 = (Base‘𝑅)
4 rdivmuldivd.p . . . . . 6 · = (.r𝑅)
5 dvrdir.u . . . . . 6 𝑈 = (Unit‘𝑅)
6 eqid 2733 . . . . . 6 (invr𝑅) = (invr𝑅)
7 dvrdir.t . . . . . 6 / = (/r𝑅)
83, 4, 5, 6, 7dvrval 20210 . . . . 5 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
98oveq1d 7421 . . . 4 ((𝑋𝐵𝑌𝑈) → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
101, 2, 9syl2anc 585 . . 3 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)))
11 rdivmuldivd.r . . . . 5 (𝜑𝑅 ∈ CRing)
12 crngring 20062 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1311, 12syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
143, 5unitss 20183 . . . . 5 𝑈𝐵
155, 6unitinvcl 20197 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
1613, 2, 15syl2anc 585 . . . . 5 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝑈)
1714, 16sselid 3980 . . . 4 (𝜑 → ((invr𝑅)‘𝑌) ∈ 𝐵)
18 rdivmuldivd.c . . . . 5 (𝜑𝑍𝐵)
19 rdivmuldivd.d . . . . 5 (𝜑𝑊𝑈)
203, 5, 7dvrcl 20211 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) ∈ 𝐵)
2113, 18, 19, 20syl3anc 1372 . . . 4 (𝜑 → (𝑍 / 𝑊) ∈ 𝐵)
223, 4ringass 20070 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵)) → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
2313, 1, 17, 21, 22syl13anc 1373 . . 3 (𝜑 → ((𝑋 · ((invr𝑅)‘𝑌)) · (𝑍 / 𝑊)) = (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))))
243, 4crngcom 20068 . . . . 5 ((𝑅 ∈ CRing ∧ ((invr𝑅)‘𝑌) ∈ 𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵) → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2511, 17, 21, 24syl3anc 1372 . . . 4 (𝜑 → (((invr𝑅)‘𝑌) · (𝑍 / 𝑊)) = ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌)))
2625oveq2d 7422 . . 3 (𝜑 → (𝑋 · (((invr𝑅)‘𝑌) · (𝑍 / 𝑊))) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
2710, 23, 263eqtrd 2777 . 2 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
28 eqid 2733 . . . . . . . 8 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
295, 28unitgrp 20190 . . . . . . 7 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
3013, 29syl 17 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
315, 28unitgrpbas 20189 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
32 eqid 2733 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
335, 28, 6invrfval 20196 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
3431, 32, 33grpinvadd 18898 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑊𝑈) → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
3530, 2, 19, 34syl3anc 1372 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
36 eqid 2733 . . . . . . . . 9 (mulGrp‘(𝑅s 𝑈)) = (mulGrp‘(𝑅s 𝑈))
375fvexi 6903 . . . . . . . . . 10 𝑈 ∈ V
38 eqid 2733 . . . . . . . . . . 11 (𝑅s 𝑈) = (𝑅s 𝑈)
3938, 4ressmulr 17249 . . . . . . . . . 10 (𝑈 ∈ V → · = (.r‘(𝑅s 𝑈)))
4037, 39ax-mp 5 . . . . . . . . 9 · = (.r‘(𝑅s 𝑈))
4136, 40mgpplusg 19986 . . . . . . . 8 · = (+g‘(mulGrp‘(𝑅s 𝑈)))
42 eqid 2733 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
4338, 42mgpress 19997 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈 ∈ V) → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4413, 37, 43sylancl 587 . . . . . . . . 9 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = (mulGrp‘(𝑅s 𝑈)))
4544fveq2d 6893 . . . . . . . 8 (𝜑 → (+g‘((mulGrp‘𝑅) ↾s 𝑈)) = (+g‘(mulGrp‘(𝑅s 𝑈))))
4641, 45eqtr4id 2792 . . . . . . 7 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
4746oveqd 7423 . . . . . 6 (𝜑 → (𝑌 · 𝑊) = (𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊))
4847fveq2d 6893 . . . . 5 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = ((invr𝑅)‘(𝑌(+g‘((mulGrp‘𝑅) ↾s 𝑈))𝑊)))
4946oveqd 7423 . . . . 5 (𝜑 → (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)) = (((invr𝑅)‘𝑊)(+g‘((mulGrp‘𝑅) ↾s 𝑈))((invr𝑅)‘𝑌)))
5035, 48, 493eqtr4d 2783 . . . 4 (𝜑 → ((invr𝑅)‘(𝑌 · 𝑊)) = (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌)))
5150oveq2d 7422 . . 3 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
523, 4ringcl 20067 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
5313, 1, 18, 52syl3anc 1372 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
545, 4unitmulcl 20187 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑊𝑈) → (𝑌 · 𝑊) ∈ 𝑈)
5513, 2, 19, 54syl3anc 1372 . . . 4 (𝜑 → (𝑌 · 𝑊) ∈ 𝑈)
563, 4, 5, 6, 7dvrval 20210 . . . 4 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑊) ∈ 𝑈) → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
5753, 55, 56syl2anc 585 . . 3 (𝜑 → ((𝑋 · 𝑍) / (𝑌 · 𝑊)) = ((𝑋 · 𝑍) · ((invr𝑅)‘(𝑌 · 𝑊))))
585, 6unitinvcl 20197 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑊𝑈) → ((invr𝑅)‘𝑊) ∈ 𝑈)
5913, 19, 58syl2anc 585 . . . . . . . 8 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝑈)
6014, 59sselid 3980 . . . . . . 7 (𝜑 → ((invr𝑅)‘𝑊) ∈ 𝐵)
613, 4ringass 20070 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵)) → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6213, 1, 18, 60, 61syl13anc 1373 . . . . . 6 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
633, 4, 5, 6, 7dvrval 20210 . . . . . . . 8 ((𝑍𝐵𝑊𝑈) → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6418, 19, 63syl2anc 585 . . . . . . 7 (𝜑 → (𝑍 / 𝑊) = (𝑍 · ((invr𝑅)‘𝑊)))
6564oveq2d 7422 . . . . . 6 (𝜑 → (𝑋 · (𝑍 / 𝑊)) = (𝑋 · (𝑍 · ((invr𝑅)‘𝑊))))
6662, 65eqtr4d 2776 . . . . 5 (𝜑 → ((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) = (𝑋 · (𝑍 / 𝑊)))
6766oveq1d 7421 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)))
683, 4ringass 20070 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑋 · 𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
6913, 53, 60, 17, 68syl13anc 1373 . . . 4 (𝜑 → (((𝑋 · 𝑍) · ((invr𝑅)‘𝑊)) · ((invr𝑅)‘𝑌)) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
703, 4ringass 20070 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑍 / 𝑊) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7113, 1, 21, 17, 70syl13anc 1373 . . . 4 (𝜑 → ((𝑋 · (𝑍 / 𝑊)) · ((invr𝑅)‘𝑌)) = (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))))
7267, 69, 713eqtr3rd 2782 . . 3 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) · (((invr𝑅)‘𝑊) · ((invr𝑅)‘𝑌))))
7351, 57, 723eqtr4rd 2784 . 2 (𝜑 → (𝑋 · ((𝑍 / 𝑊) · ((invr𝑅)‘𝑌))) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
7427, 73eqtrd 2773 1 (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cfv 6541  (class class class)co 7406  Basecbs 17141  s cress 17170  +gcplusg 17194  .rcmulr 17195  Grpcgrp 18816  mulGrpcmgp 19982  Ringcrg 20050  CRingccrg 20051  Unitcui 20162  invrcinvr 20194  /rcdvr 20207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-cmn 19645  df-mgp 19983  df-ur 20000  df-ring 20052  df-cring 20053  df-oppr 20143  df-dvdsr 20164  df-unit 20165  df-invr 20195  df-dvr 20208
This theorem is referenced by:  qqhrhm  32958
  Copyright terms: Public domain W3C validator