| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgdv | Structured version Visualization version GIF version | ||
| Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgdv.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrgdv.2 | ⊢ / = (/r‘𝑅) |
| subrgdv.3 | ⊢ 𝑈 = (Unit‘𝑆) |
| subrgdv.4 | ⊢ 𝐸 = (/r‘𝑆) |
| Ref | Expression |
|---|---|
| subrgdv | ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdv.1 | . . . . . 6 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2733 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 3 | subrgdv.3 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑆) | |
| 4 | eqid 2733 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
| 5 | 1, 2, 3, 4 | subrginv 20505 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
| 6 | 5 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
| 7 | 6 | oveq2d 7368 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌))) |
| 8 | eqid 2733 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 9 | 1, 8 | ressmulr 17213 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑆)) |
| 11 | 10 | oveqd 7369 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 12 | 7, 11 | eqtrd 2768 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 13 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 14 | 13 | subrgss 20489 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 15 | 14 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 ⊆ (Base‘𝑅)) |
| 16 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐴) | |
| 17 | 15, 16 | sseldd 3931 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
| 18 | eqid 2733 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 19 | 1, 18, 3 | subrguss 20504 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅)) |
| 20 | 19 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑈 ⊆ (Unit‘𝑅)) |
| 21 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 22 | 20, 21 | sseldd 3931 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Unit‘𝑅)) |
| 23 | subrgdv.2 | . . . 4 ⊢ / = (/r‘𝑅) | |
| 24 | 13, 8, 18, 2, 23 | dvrval 20323 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 25 | 17, 22, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 26 | 1 | subrgbas 20498 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 27 | 26 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 = (Base‘𝑆)) |
| 28 | 16, 27 | eleqtrd 2835 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑆)) |
| 29 | eqid 2733 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 30 | eqid 2733 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 31 | subrgdv.4 | . . . 4 ⊢ 𝐸 = (/r‘𝑆) | |
| 32 | 29, 30, 3, 4, 31 | dvrval 20323 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 33 | 28, 21, 32 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 34 | 12, 25, 33 | 3eqtr4d 2778 | 1 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 .rcmulr 17164 Unitcui 20275 invrcinvr 20307 /rcdvr 20320 SubRingcsubrg 20486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-subg 19038 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-subrg 20487 |
| This theorem is referenced by: qsssubdrg 21365 redvr 21556 cvsdiv 25060 qrngdiv 27563 sdrgdvcl 33272 |
| Copyright terms: Public domain | W3C validator |