MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgdv Structured version   Visualization version   GIF version

Theorem subrgdv 20041
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1 𝑆 = (𝑅s 𝐴)
subrgdv.2 / = (/r𝑅)
subrgdv.3 𝑈 = (Unit‘𝑆)
subrgdv.4 𝐸 = (/r𝑆)
Assertion
Ref Expression
subrgdv ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
2 eqid 2738 . . . . . 6 (invr𝑅) = (invr𝑅)
3 subrgdv.3 . . . . . 6 𝑈 = (Unit‘𝑆)
4 eqid 2738 . . . . . 6 (invr𝑆) = (invr𝑆)
51, 2, 3, 4subrginv 20040 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
653adant2 1130 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
76oveq2d 7291 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑅)((invr𝑆)‘𝑌)))
8 eqid 2738 . . . . . 6 (.r𝑅) = (.r𝑅)
91, 8ressmulr 17017 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1093ad2ant1 1132 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (.r𝑅) = (.r𝑆))
1110oveqd 7292 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑆)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
127, 11eqtrd 2778 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
13 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1413subrgss 20025 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
15143ad2ant1 1132 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 ⊆ (Base‘𝑅))
16 simp2 1136 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋𝐴)
1715, 16sseldd 3922 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
18 eqid 2738 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
191, 18, 3subrguss 20039 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅))
20193ad2ant1 1132 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑈 ⊆ (Unit‘𝑅))
21 simp3 1137 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌𝑈)
2220, 21sseldd 3922 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌 ∈ (Unit‘𝑅))
23 subrgdv.2 . . . 4 / = (/r𝑅)
2413, 8, 18, 2, 23dvrval 19927 . . 3 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2517, 22, 24syl2anc 584 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
261subrgbas 20033 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
27263ad2ant1 1132 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 = (Base‘𝑆))
2816, 27eleqtrd 2841 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑆))
29 eqid 2738 . . . 4 (Base‘𝑆) = (Base‘𝑆)
30 eqid 2738 . . . 4 (.r𝑆) = (.r𝑆)
31 subrgdv.4 . . . 4 𝐸 = (/r𝑆)
3229, 30, 3, 4, 31dvrval 19927 . . 3 ((𝑋 ∈ (Base‘𝑆) ∧ 𝑌𝑈) → (𝑋𝐸𝑌) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
3328, 21, 32syl2anc 584 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋𝐸𝑌) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
3412, 25, 333eqtr4d 2788 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  .rcmulr 16963  Unitcui 19881  invrcinvr 19913  /rcdvr 19924  SubRingcsubrg 20020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-subrg 20022
This theorem is referenced by:  qsssubdrg  20657  redvr  20822  cvsdiv  24295  qrngdiv  26772
  Copyright terms: Public domain W3C validator