MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgdv Structured version   Visualization version   GIF version

Theorem subrgdv 20617
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1 𝑆 = (𝑅s 𝐴)
subrgdv.2 / = (/r𝑅)
subrgdv.3 𝑈 = (Unit‘𝑆)
subrgdv.4 𝐸 = (/r𝑆)
Assertion
Ref Expression
subrgdv ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
2 eqid 2740 . . . . . 6 (invr𝑅) = (invr𝑅)
3 subrgdv.3 . . . . . 6 𝑈 = (Unit‘𝑆)
4 eqid 2740 . . . . . 6 (invr𝑆) = (invr𝑆)
51, 2, 3, 4subrginv 20616 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
653adant2 1131 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
76oveq2d 7464 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑅)((invr𝑆)‘𝑌)))
8 eqid 2740 . . . . . 6 (.r𝑅) = (.r𝑅)
91, 8ressmulr 17366 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1093ad2ant1 1133 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (.r𝑅) = (.r𝑆))
1110oveqd 7465 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑆)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
127, 11eqtrd 2780 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
13 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1413subrgss 20600 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
15143ad2ant1 1133 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 ⊆ (Base‘𝑅))
16 simp2 1137 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋𝐴)
1715, 16sseldd 4009 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
18 eqid 2740 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
191, 18, 3subrguss 20615 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅))
20193ad2ant1 1133 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑈 ⊆ (Unit‘𝑅))
21 simp3 1138 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌𝑈)
2220, 21sseldd 4009 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌 ∈ (Unit‘𝑅))
23 subrgdv.2 . . . 4 / = (/r𝑅)
2413, 8, 18, 2, 23dvrval 20429 . . 3 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2517, 22, 24syl2anc 583 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
261subrgbas 20609 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
27263ad2ant1 1133 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 = (Base‘𝑆))
2816, 27eleqtrd 2846 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑆))
29 eqid 2740 . . . 4 (Base‘𝑆) = (Base‘𝑆)
30 eqid 2740 . . . 4 (.r𝑆) = (.r𝑆)
31 subrgdv.4 . . . 4 𝐸 = (/r𝑆)
3229, 30, 3, 4, 31dvrval 20429 . . 3 ((𝑋 ∈ (Base‘𝑆) ∧ 𝑌𝑈) → (𝑋𝐸𝑌) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
3328, 21, 32syl2anc 583 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋𝐸𝑌) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
3412, 25, 333eqtr4d 2790 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  .rcmulr 17312  Unitcui 20381  invrcinvr 20413  /rcdvr 20426  SubRingcsubrg 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-subrg 20597
This theorem is referenced by:  qsssubdrg  21467  redvr  21658  cvsdiv  25184  qrngdiv  27686  sdrgdvcl  33266
  Copyright terms: Public domain W3C validator