Step | Hyp | Ref
| Expression |
1 | | subrgdv.1 |
. . . . . 6
β’ π = (π
βΎs π΄) |
2 | | eqid 2733 |
. . . . . 6
β’
(invrβπ
) = (invrβπ
) |
3 | | subrgdv.3 |
. . . . . 6
β’ π = (Unitβπ) |
4 | | eqid 2733 |
. . . . . 6
β’
(invrβπ) = (invrβπ) |
5 | 1, 2, 3, 4 | subrginv 20335 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π β π) β ((invrβπ
)βπ) = ((invrβπ)βπ)) |
6 | 5 | 3adant2 1132 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β ((invrβπ
)βπ) = ((invrβπ)βπ)) |
7 | 6 | oveq2d 7425 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β (π(.rβπ
)((invrβπ
)βπ)) = (π(.rβπ
)((invrβπ)βπ))) |
8 | | eqid 2733 |
. . . . . 6
β’
(.rβπ
) = (.rβπ
) |
9 | 1, 8 | ressmulr 17252 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β
(.rβπ
) =
(.rβπ)) |
10 | 9 | 3ad2ant1 1134 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β (.rβπ
) = (.rβπ)) |
11 | 10 | oveqd 7426 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β (π(.rβπ
)((invrβπ)βπ)) = (π(.rβπ)((invrβπ)βπ))) |
12 | 7, 11 | eqtrd 2773 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β (π(.rβπ
)((invrβπ
)βπ)) = (π(.rβπ)((invrβπ)βπ))) |
13 | | eqid 2733 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
14 | 13 | subrgss 20320 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β π΄ β (Baseβπ
)) |
15 | 14 | 3ad2ant1 1134 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π΄ β (Baseβπ
)) |
16 | | simp2 1138 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π β π΄) |
17 | 15, 16 | sseldd 3984 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π β (Baseβπ
)) |
18 | | eqid 2733 |
. . . . . 6
β’
(Unitβπ
) =
(Unitβπ
) |
19 | 1, 18, 3 | subrguss 20334 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β π β (Unitβπ
)) |
20 | 19 | 3ad2ant1 1134 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π β (Unitβπ
)) |
21 | | simp3 1139 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π β π) |
22 | 20, 21 | sseldd 3984 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π β (Unitβπ
)) |
23 | | subrgdv.2 |
. . . 4
β’ / =
(/rβπ
) |
24 | 13, 8, 18, 2, 23 | dvrval 20217 |
. . 3
β’ ((π β (Baseβπ
) β§ π β (Unitβπ
)) β (π / π) = (π(.rβπ
)((invrβπ
)βπ))) |
25 | 17, 22, 24 | syl2anc 585 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β (π / π) = (π(.rβπ
)((invrβπ
)βπ))) |
26 | 1 | subrgbas 20328 |
. . . . 5
β’ (π΄ β (SubRingβπ
) β π΄ = (Baseβπ)) |
27 | 26 | 3ad2ant1 1134 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π΄ = (Baseβπ)) |
28 | 16, 27 | eleqtrd 2836 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β π β (Baseβπ)) |
29 | | eqid 2733 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
30 | | eqid 2733 |
. . . 4
β’
(.rβπ) = (.rβπ) |
31 | | subrgdv.4 |
. . . 4
β’ πΈ = (/rβπ) |
32 | 29, 30, 3, 4, 31 | dvrval 20217 |
. . 3
β’ ((π β (Baseβπ) β§ π β π) β (ππΈπ) = (π(.rβπ)((invrβπ)βπ))) |
33 | 28, 21, 32 | syl2anc 585 |
. 2
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β (ππΈπ) = (π(.rβπ)((invrβπ)βπ))) |
34 | 12, 25, 33 | 3eqtr4d 2783 |
1
β’ ((π΄ β (SubRingβπ
) β§ π β π΄ β§ π β π) β (π / π) = (ππΈπ)) |