| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgdv | Structured version Visualization version GIF version | ||
| Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrgdv.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrgdv.2 | ⊢ / = (/r‘𝑅) |
| subrgdv.3 | ⊢ 𝑈 = (Unit‘𝑆) |
| subrgdv.4 | ⊢ 𝐸 = (/r‘𝑆) |
| Ref | Expression |
|---|---|
| subrgdv | ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdv.1 | . . . . . 6 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 3 | subrgdv.3 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑆) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
| 5 | 1, 2, 3, 4 | subrginv 20504 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
| 6 | 5 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
| 7 | 6 | oveq2d 7362 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌))) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 9 | 1, 8 | ressmulr 17211 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑆)) |
| 11 | 10 | oveqd 7363 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 12 | 7, 11 | eqtrd 2766 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 13 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 14 | 13 | subrgss 20488 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 15 | 14 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 ⊆ (Base‘𝑅)) |
| 16 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐴) | |
| 17 | 15, 16 | sseldd 3935 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
| 18 | eqid 2731 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 19 | 1, 18, 3 | subrguss 20503 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅)) |
| 20 | 19 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑈 ⊆ (Unit‘𝑅)) |
| 21 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 22 | 20, 21 | sseldd 3935 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Unit‘𝑅)) |
| 23 | subrgdv.2 | . . . 4 ⊢ / = (/r‘𝑅) | |
| 24 | 13, 8, 18, 2, 23 | dvrval 20322 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 25 | 17, 22, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
| 26 | 1 | subrgbas 20497 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 27 | 26 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 = (Base‘𝑆)) |
| 28 | 16, 27 | eleqtrd 2833 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑆)) |
| 29 | eqid 2731 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 30 | eqid 2731 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 31 | subrgdv.4 | . . . 4 ⊢ 𝐸 = (/r‘𝑆) | |
| 32 | 29, 30, 3, 4, 31 | dvrval 20322 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 33 | 28, 21, 32 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
| 34 | 12, 25, 33 | 3eqtr4d 2776 | 1 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 Unitcui 20274 invrcinvr 20306 /rcdvr 20319 SubRingcsubrg 20485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-dvr 20320 df-subrg 20486 |
| This theorem is referenced by: qsssubdrg 21364 redvr 21555 cvsdiv 25060 qrngdiv 27563 sdrgdvcl 33263 |
| Copyright terms: Public domain | W3C validator |