Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgdv | Structured version Visualization version GIF version |
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
subrgdv.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
subrgdv.2 | ⊢ / = (/r‘𝑅) |
subrgdv.3 | ⊢ 𝑈 = (Unit‘𝑆) |
subrgdv.4 | ⊢ 𝐸 = (/r‘𝑆) |
Ref | Expression |
---|---|
subrgdv | ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgdv.1 | . . . . . 6 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2740 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
3 | subrgdv.3 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑆) | |
4 | eqid 2740 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
5 | 1, 2, 3, 4 | subrginv 20038 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
6 | 5 | 3adant2 1130 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
7 | 6 | oveq2d 7287 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌))) |
8 | eqid 2740 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | 1, 8 | ressmulr 17015 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
10 | 9 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑆)) |
11 | 10 | oveqd 7288 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
12 | 7, 11 | eqtrd 2780 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
13 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 13 | subrgss 20023 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
15 | 14 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 ⊆ (Base‘𝑅)) |
16 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐴) | |
17 | 15, 16 | sseldd 3927 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
18 | eqid 2740 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
19 | 1, 18, 3 | subrguss 20037 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅)) |
20 | 19 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑈 ⊆ (Unit‘𝑅)) |
21 | simp3 1137 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
22 | 20, 21 | sseldd 3927 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Unit‘𝑅)) |
23 | subrgdv.2 | . . . 4 ⊢ / = (/r‘𝑅) | |
24 | 13, 8, 18, 2, 23 | dvrval 19925 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
25 | 17, 22, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
26 | 1 | subrgbas 20031 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
27 | 26 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 = (Base‘𝑆)) |
28 | 16, 27 | eleqtrd 2843 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑆)) |
29 | eqid 2740 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
30 | eqid 2740 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
31 | subrgdv.4 | . . . 4 ⊢ 𝐸 = (/r‘𝑆) | |
32 | 29, 30, 3, 4, 31 | dvrval 19925 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
33 | 28, 21, 32 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
34 | 12, 25, 33 | 3eqtr4d 2790 | 1 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 ↾s cress 16939 .rcmulr 16961 Unitcui 19879 invrcinvr 19911 /rcdvr 19922 SubRingcsubrg 20018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-subg 18750 df-mgp 19719 df-ur 19736 df-ring 19783 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-subrg 20020 |
This theorem is referenced by: qsssubdrg 20655 redvr 20820 cvsdiv 24293 qrngdiv 26770 |
Copyright terms: Public domain | W3C validator |