Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp2 Structured version   Visualization version   GIF version

Theorem lkrlsp2 36854
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.)
Hypotheses
Ref Expression
lkrlsp2.v 𝑉 = (Base‘𝑊)
lkrlsp2.n 𝑁 = (LSpan‘𝑊)
lkrlsp2.p = (LSSum‘𝑊)
lkrlsp2.f 𝐹 = (LFnl‘𝑊)
lkrlsp2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp2
StepHypRef Expression
1 simp2l 1201 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋𝑉)
2 simp3 1140 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺𝑋) = (0g‘(Scalar‘𝑊)))
3 simp1 1138 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
4 simp2r 1202 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺𝐹)
5 lkrlsp2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2737 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2737 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
8 lkrlsp2.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
9 lkrlsp2.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
105, 6, 7, 8, 9ellkr 36840 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
113, 4, 10syl2anc 587 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
121, 2, 11mpbir2and 713 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾𝐺))
13123expia 1123 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → ((𝐺𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾𝐺)))
1413necon3bd 2954 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → (¬ 𝑋 ∈ (𝐾𝐺) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))))
15143impia 1119 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊)))
16 lkrlsp2.n . . 3 𝑁 = (LSpan‘𝑊)
17 lkrlsp2.p . . 3 = (LSSum‘𝑊)
186, 7, 5, 16, 17, 8, 9lkrlsp 36853 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
1915, 18syld3an3 1411 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  {csn 4541  cfv 6380  (class class class)co 7213  Basecbs 16760  Scalarcsca 16805  0gc0g 16944  LSSumclsm 19023  LSpanclspn 20008  LVecclvec 20139  LFnlclfn 36808  LKerclk 36836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-lsm 19025  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-drng 19769  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lvec 20140  df-lfl 36809  df-lkr 36837
This theorem is referenced by:  lkrlsp3  36855
  Copyright terms: Public domain W3C validator