Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp2 Structured version   Visualization version   GIF version

Theorem lkrlsp2 35770
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.)
Hypotheses
Ref Expression
lkrlsp2.v 𝑉 = (Base‘𝑊)
lkrlsp2.n 𝑁 = (LSpan‘𝑊)
lkrlsp2.p = (LSSum‘𝑊)
lkrlsp2.f 𝐹 = (LFnl‘𝑊)
lkrlsp2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp2
StepHypRef Expression
1 simp2l 1192 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋𝑉)
2 simp3 1131 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺𝑋) = (0g‘(Scalar‘𝑊)))
3 simp1 1129 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
4 simp2r 1193 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺𝐹)
5 lkrlsp2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2795 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2795 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
8 lkrlsp2.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
9 lkrlsp2.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
105, 6, 7, 8, 9ellkr 35756 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
113, 4, 10syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
121, 2, 11mpbir2and 709 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾𝐺))
13123expia 1114 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → ((𝐺𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾𝐺)))
1413necon3bd 2998 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → (¬ 𝑋 ∈ (𝐾𝐺) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))))
15143impia 1110 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊)))
16 lkrlsp2.n . . 3 𝑁 = (LSpan‘𝑊)
17 lkrlsp2.p . . 3 = (LSSum‘𝑊)
186, 7, 5, 16, 17, 8, 9lkrlsp 35769 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
1915, 18syld3an3 1402 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  {csn 4472  cfv 6225  (class class class)co 7016  Basecbs 16312  Scalarcsca 16397  0gc0g 16542  LSSumclsm 18489  LSpanclspn 19433  LVecclvec 19564  LFnlclfn 35724  LKerclk 35752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-subg 18030  df-cntz 18188  df-lsm 18491  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-drng 19194  df-lmod 19326  df-lss 19394  df-lsp 19434  df-lvec 19565  df-lfl 35725  df-lkr 35753
This theorem is referenced by:  lkrlsp3  35771
  Copyright terms: Public domain W3C validator