Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp2 Structured version   Visualization version   GIF version

Theorem lkrlsp2 37961
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.)
Hypotheses
Ref Expression
lkrlsp2.v 𝑉 = (Base‘𝑊)
lkrlsp2.n 𝑁 = (LSpan‘𝑊)
lkrlsp2.p = (LSSum‘𝑊)
lkrlsp2.f 𝐹 = (LFnl‘𝑊)
lkrlsp2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp2
StepHypRef Expression
1 simp2l 1199 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋𝑉)
2 simp3 1138 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺𝑋) = (0g‘(Scalar‘𝑊)))
3 simp1 1136 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
4 simp2r 1200 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺𝐹)
5 lkrlsp2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2732 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2732 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
8 lkrlsp2.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
9 lkrlsp2.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
105, 6, 7, 8, 9ellkr 37947 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
113, 4, 10syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
121, 2, 11mpbir2and 711 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾𝐺))
13123expia 1121 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → ((𝐺𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾𝐺)))
1413necon3bd 2954 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → (¬ 𝑋 ∈ (𝐾𝐺) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))))
15143impia 1117 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊)))
16 lkrlsp2.n . . 3 𝑁 = (LSpan‘𝑊)
17 lkrlsp2.p . . 3 = (LSSum‘𝑊)
186, 7, 5, 16, 17, 8, 9lkrlsp 37960 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
1915, 18syld3an3 1409 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  {csn 4627  cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196  0gc0g 17381  LSSumclsm 19496  LSpanclspn 20574  LVecclvec 20705  LFnlclfn 37915  LKerclk 37943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19498  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-drng 20309  df-lmod 20465  df-lss 20535  df-lsp 20575  df-lvec 20706  df-lfl 37916  df-lkr 37944
This theorem is referenced by:  lkrlsp3  37962
  Copyright terms: Public domain W3C validator