| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp2 | Structured version Visualization version GIF version | ||
| Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
| Ref | Expression |
|---|---|
| lkrlsp2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrlsp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lkrlsp2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lkrlsp2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrlsp2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrlsp2 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1200 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ 𝑉) | |
| 2 | simp3 1139 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) | |
| 3 | simp1 1137 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) | |
| 4 | simp2r 1201 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) | |
| 5 | lkrlsp2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | eqid 2736 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 7 | eqid 2736 | . . . . . . . 8 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 8 | lkrlsp2.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | lkrlsp2.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | ellkr 39068 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
| 11 | 3, 4, 10 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
| 12 | 1, 2, 11 | mpbir2and 713 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾‘𝐺)) |
| 13 | 12 | 3expia 1122 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → ((𝐺‘𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾‘𝐺))) |
| 14 | 13 | necon3bd 2953 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → (¬ 𝑋 ∈ (𝐾‘𝐺) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊)))) |
| 15 | 14 | 3impia 1118 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) |
| 16 | lkrlsp2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 17 | lkrlsp2.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
| 18 | 6, 7, 5, 16, 17, 8, 9 | lkrlsp 39081 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
| 19 | 15, 18 | syld3an3 1411 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 {csn 4624 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Scalarcsca 17296 0gc0g 17480 LSSumclsm 19648 LSpanclspn 20961 LVecclvec 21093 LFnlclfn 39036 LKerclk 39064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-tpos 8247 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-map 8864 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-ress 17271 df-plusg 17306 df-mulr 17307 df-0g 17482 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-submnd 18793 df-grp 18950 df-minusg 18951 df-sbg 18952 df-subg 19137 df-cntz 19331 df-lsm 19650 df-cmn 19796 df-abl 19797 df-mgp 20134 df-rng 20146 df-ur 20175 df-ring 20228 df-oppr 20326 df-dvdsr 20349 df-unit 20350 df-invr 20380 df-drng 20723 df-lmod 20852 df-lss 20922 df-lsp 20962 df-lvec 21094 df-lfl 39037 df-lkr 39065 |
| This theorem is referenced by: lkrlsp3 39083 |
| Copyright terms: Public domain | W3C validator |