| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp2 | Structured version Visualization version GIF version | ||
| Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
| Ref | Expression |
|---|---|
| lkrlsp2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrlsp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lkrlsp2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lkrlsp2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrlsp2.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrlsp2 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1199 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ 𝑉) | |
| 2 | simp3 1138 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) | |
| 3 | simp1 1136 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) | |
| 4 | simp2r 1200 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) | |
| 5 | lkrlsp2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | eqid 2734 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 7 | eqid 2734 | . . . . . . . 8 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 8 | lkrlsp2.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | lkrlsp2.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | ellkr 39065 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
| 11 | 3, 4, 10 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
| 12 | 1, 2, 11 | mpbir2and 713 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾‘𝐺)) |
| 13 | 12 | 3expia 1121 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → ((𝐺‘𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾‘𝐺))) |
| 14 | 13 | necon3bd 2945 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → (¬ 𝑋 ∈ (𝐾‘𝐺) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊)))) |
| 15 | 14 | 3impia 1117 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) |
| 16 | lkrlsp2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 17 | lkrlsp2.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
| 18 | 6, 7, 5, 16, 17, 8, 9 | lkrlsp 39078 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
| 19 | 15, 18 | syld3an3 1410 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {csn 4606 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Scalarcsca 17277 0gc0g 17456 LSSumclsm 19621 LSpanclspn 20938 LVecclvec 21070 LFnlclfn 39033 LKerclk 39061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lvec 21071 df-lfl 39034 df-lkr 39062 |
| This theorem is referenced by: lkrlsp3 39080 |
| Copyright terms: Public domain | W3C validator |