Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp2 | Structured version Visualization version GIF version |
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
Ref | Expression |
---|---|
lkrlsp2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrlsp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lkrlsp2.p | ⊢ ⊕ = (LSSum‘𝑊) |
lkrlsp2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrlsp2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrlsp2 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2l 1198 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ 𝑉) | |
2 | simp3 1137 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) | |
3 | simp1 1135 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) | |
4 | simp2r 1199 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) | |
5 | lkrlsp2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
6 | eqid 2738 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | eqid 2738 | . . . . . . . 8 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
8 | lkrlsp2.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | lkrlsp2.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
10 | 5, 6, 7, 8, 9 | ellkr 37103 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
11 | 3, 4, 10 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
12 | 1, 2, 11 | mpbir2and 710 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾‘𝐺)) |
13 | 12 | 3expia 1120 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → ((𝐺‘𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾‘𝐺))) |
14 | 13 | necon3bd 2957 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → (¬ 𝑋 ∈ (𝐾‘𝐺) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊)))) |
15 | 14 | 3impia 1116 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) |
16 | lkrlsp2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
17 | lkrlsp2.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
18 | 6, 7, 5, 16, 17, 8, 9 | lkrlsp 37116 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
19 | 15, 18 | syld3an3 1408 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {csn 4561 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 0gc0g 17150 LSSumclsm 19239 LSpanclspn 20233 LVecclvec 20364 LFnlclfn 37071 LKerclk 37099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lfl 37072 df-lkr 37100 |
This theorem is referenced by: lkrlsp3 37118 |
Copyright terms: Public domain | W3C validator |