![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp2 | Structured version Visualization version GIF version |
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
Ref | Expression |
---|---|
lkrlsp2.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrlsp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lkrlsp2.p | ⊢ ⊕ = (LSSum‘𝑊) |
lkrlsp2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrlsp2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrlsp2 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2l 1192 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ 𝑉) | |
2 | simp3 1131 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) | |
3 | simp1 1129 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec) | |
4 | simp2r 1193 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺 ∈ 𝐹) | |
5 | lkrlsp2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
6 | eqid 2795 | . . . . . . . 8 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | eqid 2795 | . . . . . . . 8 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
8 | lkrlsp2.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | lkrlsp2.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
10 | 5, 6, 7, 8, 9 | ellkr 35756 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
11 | 3, 4, 10 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))))) |
12 | 1, 2, 11 | mpbir2and 709 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾‘𝐺)) |
13 | 12 | 3expia 1114 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → ((𝐺‘𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾‘𝐺))) |
14 | 13 | necon3bd 2998 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹)) → (¬ 𝑋 ∈ (𝐾‘𝐺) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊)))) |
15 | 14 | 3impia 1110 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) |
16 | lkrlsp2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
17 | lkrlsp2.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
18 | 6, 7, 5, 16, 17, 8, 9 | lkrlsp 35769 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
19 | 15, 18 | syld3an3 1402 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 {csn 4472 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 Scalarcsca 16397 0gc0g 16542 LSSumclsm 18489 LSpanclspn 19433 LVecclvec 19564 LFnlclfn 35724 LKerclk 35752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-tpos 7743 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-0g 16544 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-grp 17864 df-minusg 17865 df-sbg 17866 df-subg 18030 df-cntz 18188 df-lsm 18491 df-cmn 18635 df-abl 18636 df-mgp 18930 df-ur 18942 df-ring 18989 df-oppr 19063 df-dvdsr 19081 df-unit 19082 df-invr 19112 df-drng 19194 df-lmod 19326 df-lss 19394 df-lsp 19434 df-lvec 19565 df-lfl 35725 df-lkr 35753 |
This theorem is referenced by: lkrlsp3 35771 |
Copyright terms: Public domain | W3C validator |