Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp2 Structured version   Visualization version   GIF version

Theorem lkrlsp2 37117
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.)
Hypotheses
Ref Expression
lkrlsp2.v 𝑉 = (Base‘𝑊)
lkrlsp2.n 𝑁 = (LSpan‘𝑊)
lkrlsp2.p = (LSSum‘𝑊)
lkrlsp2.f 𝐹 = (LFnl‘𝑊)
lkrlsp2.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp2
StepHypRef Expression
1 simp2l 1198 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋𝑉)
2 simp3 1137 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝐺𝑋) = (0g‘(Scalar‘𝑊)))
3 simp1 1135 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
4 simp2r 1199 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝐺𝐹)
5 lkrlsp2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 eqid 2738 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2738 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
8 lkrlsp2.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
9 lkrlsp2.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
105, 6, 7, 8, 9ellkr 37103 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
113, 4, 10syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → (𝑋 ∈ (𝐾𝐺) ↔ (𝑋𝑉 ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊)))))
121, 2, 11mpbir2and 710 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝐾𝐺))
13123expia 1120 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → ((𝐺𝑋) = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝐾𝐺)))
1413necon3bd 2957 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹)) → (¬ 𝑋 ∈ (𝐾𝐺) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))))
15143impia 1116 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊)))
16 lkrlsp2.n . . 3 𝑁 = (LSpan‘𝑊)
17 lkrlsp2.p . . 3 = (LSSum‘𝑊)
186, 7, 5, 16, 17, 8, 9lkrlsp 37116 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ (0g‘(Scalar‘𝑊))) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
1915, 18syld3an3 1408 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965  0gc0g 17150  LSSumclsm 19239  LSpanclspn 20233  LVecclvec 20364  LFnlclfn 37071  LKerclk 37099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lfl 37072  df-lkr 37100
This theorem is referenced by:  lkrlsp3  37118
  Copyright terms: Public domain W3C validator