| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ublbneg | Structured version Visualization version GIF version | ||
| Description: The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| ublbneg | ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . . . . 5 ⊢ (𝑏 = 𝑦 → (𝑏 ≤ 𝑎 ↔ 𝑦 ≤ 𝑎)) | |
| 2 | 1 | cbvralvw 3207 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
| 3 | 2 | rexbii 3076 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
| 4 | breq2 5096 | . . . . 5 ⊢ (𝑎 = 𝑥 → (𝑦 ≤ 𝑎 ↔ 𝑦 ≤ 𝑥)) | |
| 5 | 4 | ralbidv 3152 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 6 | 5 | cbvrexvw 3208 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 7 | 3, 6 | bitri 275 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 8 | renegcl 11427 | . . . 4 ⊢ (𝑎 ∈ ℝ → -𝑎 ∈ ℝ) | |
| 9 | elrabi 3643 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → 𝑦 ∈ ℝ) | |
| 10 | negeq 11355 | . . . . . . . . . . . 12 ⊢ (𝑧 = 𝑦 → -𝑧 = -𝑦) | |
| 11 | 10 | eleq1d 2813 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑦 → (-𝑧 ∈ 𝐴 ↔ -𝑦 ∈ 𝐴)) |
| 12 | 11 | elrab3 3649 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ -𝑦 ∈ 𝐴)) |
| 13 | 12 | biimpd 229 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴)) |
| 14 | 9, 13 | mpcom 38 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴) |
| 15 | breq1 5095 | . . . . . . . . 9 ⊢ (𝑏 = -𝑦 → (𝑏 ≤ 𝑎 ↔ -𝑦 ≤ 𝑎)) | |
| 16 | 15 | rspcv 3573 | . . . . . . . 8 ⊢ (-𝑦 ∈ 𝐴 → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
| 17 | 14, 16 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
| 19 | lenegcon1 11624 | . . . . . . 7 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) | |
| 20 | 9, 19 | sylan2 593 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) |
| 21 | 18, 20 | sylibrd 259 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑎 ≤ 𝑦)) |
| 22 | 21 | ralrimdva 3129 | . . . 4 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
| 23 | breq1 5095 | . . . . . 6 ⊢ (𝑥 = -𝑎 → (𝑥 ≤ 𝑦 ↔ -𝑎 ≤ 𝑦)) | |
| 24 | 23 | ralbidv 3152 | . . . . 5 ⊢ (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
| 25 | 24 | rspcev 3577 | . . . 4 ⊢ ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| 26 | 8, 22, 25 | syl6an 684 | . . 3 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦)) |
| 27 | 26 | rexlimiv 3123 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| 28 | 7, 27 | sylbir 235 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3394 class class class wbr 5092 ℝcr 11008 ≤ cle 11150 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: supminf 12836 supminfxr 45453 |
| Copyright terms: Public domain | W3C validator |