![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ublbneg | Structured version Visualization version GIF version |
Description: The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
ublbneg | ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5152 | . . . . 5 ⊢ (𝑏 = 𝑦 → (𝑏 ≤ 𝑎 ↔ 𝑦 ≤ 𝑎)) | |
2 | 1 | cbvralvw 3224 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
3 | 2 | rexbii 3083 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
4 | breq2 5153 | . . . . 5 ⊢ (𝑎 = 𝑥 → (𝑦 ≤ 𝑎 ↔ 𝑦 ≤ 𝑥)) | |
5 | 4 | ralbidv 3167 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
6 | 5 | cbvrexvw 3225 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
7 | 3, 6 | bitri 274 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
8 | renegcl 11555 | . . . 4 ⊢ (𝑎 ∈ ℝ → -𝑎 ∈ ℝ) | |
9 | elrabi 3673 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → 𝑦 ∈ ℝ) | |
10 | negeq 11484 | . . . . . . . . . . . 12 ⊢ (𝑧 = 𝑦 → -𝑧 = -𝑦) | |
11 | 10 | eleq1d 2810 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑦 → (-𝑧 ∈ 𝐴 ↔ -𝑦 ∈ 𝐴)) |
12 | 11 | elrab3 3680 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ -𝑦 ∈ 𝐴)) |
13 | 12 | biimpd 228 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴)) |
14 | 9, 13 | mpcom 38 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴) |
15 | breq1 5152 | . . . . . . . . 9 ⊢ (𝑏 = -𝑦 → (𝑏 ≤ 𝑎 ↔ -𝑦 ≤ 𝑎)) | |
16 | 15 | rspcv 3602 | . . . . . . . 8 ⊢ (-𝑦 ∈ 𝐴 → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
17 | 14, 16 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
18 | 17 | adantl 480 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
19 | lenegcon1 11750 | . . . . . . 7 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) | |
20 | 9, 19 | sylan2 591 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) |
21 | 18, 20 | sylibrd 258 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑎 ≤ 𝑦)) |
22 | 21 | ralrimdva 3143 | . . . 4 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
23 | breq1 5152 | . . . . . 6 ⊢ (𝑥 = -𝑎 → (𝑥 ≤ 𝑦 ↔ -𝑎 ≤ 𝑦)) | |
24 | 23 | ralbidv 3167 | . . . . 5 ⊢ (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
25 | 24 | rspcev 3606 | . . . 4 ⊢ ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
26 | 8, 22, 25 | syl6an 682 | . . 3 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦)) |
27 | 26 | rexlimiv 3137 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
28 | 7, 27 | sylbir 234 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 {crab 3418 class class class wbr 5149 ℝcr 11139 ≤ cle 11281 -cneg 11477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 |
This theorem is referenced by: supminf 12952 supminfxr 44981 |
Copyright terms: Public domain | W3C validator |