![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ublbneg | Structured version Visualization version GIF version |
Description: The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
ublbneg | ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4846 | . . . . 5 ⊢ (𝑏 = 𝑦 → (𝑏 ≤ 𝑎 ↔ 𝑦 ≤ 𝑎)) | |
2 | 1 | cbvralv 3354 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
3 | 2 | rexbii 3222 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
4 | breq2 4847 | . . . . 5 ⊢ (𝑎 = 𝑥 → (𝑦 ≤ 𝑎 ↔ 𝑦 ≤ 𝑥)) | |
5 | 4 | ralbidv 3167 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
6 | 5 | cbvrexv 3355 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
7 | 3, 6 | bitri 267 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
8 | renegcl 10636 | . . . 4 ⊢ (𝑎 ∈ ℝ → -𝑎 ∈ ℝ) | |
9 | elrabi 3551 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → 𝑦 ∈ ℝ) | |
10 | negeq 10564 | . . . . . . . . . . . 12 ⊢ (𝑧 = 𝑦 → -𝑧 = -𝑦) | |
11 | 10 | eleq1d 2863 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑦 → (-𝑧 ∈ 𝐴 ↔ -𝑦 ∈ 𝐴)) |
12 | 11 | elrab3 3558 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ -𝑦 ∈ 𝐴)) |
13 | 12 | biimpd 221 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴)) |
14 | 9, 13 | mpcom 38 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴) |
15 | breq1 4846 | . . . . . . . . 9 ⊢ (𝑏 = -𝑦 → (𝑏 ≤ 𝑎 ↔ -𝑦 ≤ 𝑎)) | |
16 | 15 | rspcv 3493 | . . . . . . . 8 ⊢ (-𝑦 ∈ 𝐴 → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
17 | 14, 16 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
18 | 17 | adantl 474 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
19 | lenegcon1 10824 | . . . . . . 7 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) | |
20 | 9, 19 | sylan2 587 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) |
21 | 18, 20 | sylibrd 251 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑎 ≤ 𝑦)) |
22 | 21 | ralrimdva 3150 | . . . 4 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
23 | breq1 4846 | . . . . . 6 ⊢ (𝑥 = -𝑎 → (𝑥 ≤ 𝑦 ↔ -𝑎 ≤ 𝑦)) | |
24 | 23 | ralbidv 3167 | . . . . 5 ⊢ (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
25 | 24 | rspcev 3497 | . . . 4 ⊢ ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
26 | 8, 22, 25 | syl6an 675 | . . 3 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦)) |
27 | 26 | rexlimiv 3208 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
28 | 7, 27 | sylbir 227 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 {crab 3093 class class class wbr 4843 ℝcr 10223 ≤ cle 10364 -cneg 10557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 |
This theorem is referenced by: supminf 12020 supminfxr 40437 |
Copyright terms: Public domain | W3C validator |