MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odngen Structured version   Visualization version   GIF version

Theorem odngen 19483
Description: A cyclic subgroup of size (𝑂𝐴) has (ϕ‘(𝑂𝐴)) generators. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odngen ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥,𝑋

Proof of Theorem odngen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) = (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴))
21mptpreima 6199 . . 3 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}
32fveq2i 6843 . 2 (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}})
4 odhash.x . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2729 . . . . 5 (.g𝐺) = (.g𝐺)
6 odhash.o . . . . 5 𝑂 = (od‘𝐺)
7 odhash.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
84, 5, 6, 7odf1o2 19479 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
9 f1ocnv 6794 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)))
10 f1of1 6781 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
118, 9, 103syl 18 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
12 ssrab2 4039 . . 3 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})
13 fvex 6853 . . . . . 6 (𝐾‘{𝐴}) ∈ V
1413rabex 5289 . . . . 5 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ∈ V
1514f1imaen 8965 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})
16 hasheni 14289 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1715, 16syl 17 . . 3 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1811, 12, 17sylancl 586 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
19 simpl1 1192 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
20 simpl2 1193 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
21 elfzoelz 13596 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2221adantl 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝑦 ∈ ℤ)
234, 5, 7cycsubg2cl 19119 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
2419, 20, 22, 23syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
25 fveqeq2 6849 . . . . . . . 8 (𝑥 = (𝑦(.g𝐺)𝐴) → ((𝑂𝑥) = (𝑂𝐴) ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2625elrab3 3657 . . . . . . 7 ((𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2724, 26syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
28 simpl3 1194 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑂𝐴) ∈ ℕ)
294, 6, 5odmulgeq 19463 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3019, 20, 22, 28, 29syl31anc 1375 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3127, 30bitrd 279 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3231rabbidva 3409 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}} = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1})
3332fveq2d 6844 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
34 dfphi2 16720 . . . 4 ((𝑂𝐴) ∈ ℕ → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
35343ad2ant3 1135 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
3633, 35eqtr4d 2767 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (ϕ‘(𝑂𝐴)))
373, 18, 363eqtr3a 2788 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cen 8892  0cc0 11044  1c1 11045  cn 12162  cz 12505  ..^cfzo 13591  chash 14271   gcd cgcd 16440  ϕcphi 16710  Basecbs 17155  mrClscmrc 17520  Grpcgrp 18841  .gcmg 18975  SubGrpcsubg 19028  odcod 19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-phi 16712  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-od 19434
This theorem is referenced by:  proot1hash  43157
  Copyright terms: Public domain W3C validator