MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odngen Structured version   Visualization version   GIF version

Theorem odngen 18200
Description: A cyclic subgroup of size (𝑂𝐴) has (ϕ‘(𝑂𝐴)) generators. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odngen ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥,𝑋

Proof of Theorem odngen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . 4 (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) = (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴))
21mptpreima 5773 . . 3 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}
32fveq2i 6336 . 2 (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}})
4 odhash.x . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2771 . . . . 5 (.g𝐺) = (.g𝐺)
6 odhash.o . . . . 5 𝑂 = (od‘𝐺)
7 odhash.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
84, 5, 6, 7odf1o2 18196 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
9 f1ocnv 6291 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)))
10 f1of1 6278 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
118, 9, 103syl 18 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
12 ssrab2 3837 . . 3 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})
13 fvex 6343 . . . . . 6 (𝐾‘{𝐴}) ∈ V
1413rabex 4947 . . . . 5 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ∈ V
1514f1imaen 8172 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})
16 hasheni 13341 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1715, 16syl 17 . . 3 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1811, 12, 17sylancl 568 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
19 simpl1 1227 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
20 simpl2 1229 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
21 elfzoelz 12679 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2221adantl 467 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝑦 ∈ ℤ)
234, 5, 7cycsubg2cl 17841 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
2419, 20, 22, 23syl3anc 1476 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
25 fveq2 6333 . . . . . . . . 9 (𝑥 = (𝑦(.g𝐺)𝐴) → (𝑂𝑥) = (𝑂‘(𝑦(.g𝐺)𝐴)))
2625eqeq1d 2773 . . . . . . . 8 (𝑥 = (𝑦(.g𝐺)𝐴) → ((𝑂𝑥) = (𝑂𝐴) ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2726elrab3 3517 . . . . . . 7 ((𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2824, 27syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
29 simpl3 1231 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑂𝐴) ∈ ℕ)
304, 6, 5odmulgeq 18182 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3119, 20, 22, 29, 30syl31anc 1479 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3228, 31bitrd 268 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3332rabbidva 3338 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}} = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1})
3433fveq2d 6337 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
35 dfphi2 15687 . . . 4 ((𝑂𝐴) ∈ ℕ → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
36353ad2ant3 1129 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
3734, 36eqtr4d 2808 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (ϕ‘(𝑂𝐴)))
383, 18, 373eqtr3a 2829 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065  wss 3724  {csn 4317   class class class wbr 4787  cmpt 4864  ccnv 5249  cima 5253  1-1wf1 6029  1-1-ontowf1o 6031  cfv 6032  (class class class)co 6794  cen 8107  0cc0 10139  1c1 10140  cn 11223  cz 11580  ..^cfzo 12674  chash 13322   gcd cgcd 15425  ϕcphi 15677  Basecbs 16065  mrClscmrc 16452  Grpcgrp 17631  .gcmg 17749  SubGrpcsubg 17797  odcod 18152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-sup 8505  df-inf 8506  df-card 8966  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-n0 11496  df-xnn0 11567  df-z 11581  df-uz 11890  df-rp 12037  df-fz 12535  df-fzo 12675  df-fl 12802  df-mod 12878  df-seq 13010  df-exp 13069  df-hash 13323  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-dvds 15191  df-gcd 15426  df-phi 15679  df-ndx 16068  df-slot 16069  df-base 16071  df-sets 16072  df-ress 16073  df-plusg 16163  df-0g 16311  df-mre 16455  df-mrc 16456  df-acs 16458  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-submnd 17545  df-grp 17634  df-minusg 17635  df-sbg 17636  df-mulg 17750  df-subg 17800  df-od 18156
This theorem is referenced by:  proot1hash  38305
  Copyright terms: Public domain W3C validator