MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odngen Structured version   Visualization version   GIF version

Theorem odngen 18693
Description: A cyclic subgroup of size (𝑂𝐴) has (ϕ‘(𝑂𝐴)) generators. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odngen ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥,𝑋

Proof of Theorem odngen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2822 . . . 4 (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) = (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴))
21mptpreima 6070 . . 3 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}
32fveq2i 6655 . 2 (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}})
4 odhash.x . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2822 . . . . 5 (.g𝐺) = (.g𝐺)
6 odhash.o . . . . 5 𝑂 = (od‘𝐺)
7 odhash.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
84, 5, 6, 7odf1o2 18689 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
9 f1ocnv 6609 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)))
10 f1of1 6596 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
118, 9, 103syl 18 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
12 ssrab2 4031 . . 3 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})
13 fvex 6665 . . . . . 6 (𝐾‘{𝐴}) ∈ V
1413rabex 5211 . . . . 5 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ∈ V
1514f1imaen 8558 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})
16 hasheni 13704 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1715, 16syl 17 . . 3 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1811, 12, 17sylancl 589 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
19 simpl1 1188 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
20 simpl2 1189 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
21 elfzoelz 13033 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2221adantl 485 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝑦 ∈ ℤ)
234, 5, 7cycsubg2cl 18345 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
2419, 20, 22, 23syl3anc 1368 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
25 fveqeq2 6661 . . . . . . . 8 (𝑥 = (𝑦(.g𝐺)𝐴) → ((𝑂𝑥) = (𝑂𝐴) ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2625elrab3 3656 . . . . . . 7 ((𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2724, 26syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
28 simpl3 1190 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑂𝐴) ∈ ℕ)
294, 6, 5odmulgeq 18675 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3019, 20, 22, 28, 29syl31anc 1370 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3127, 30bitrd 282 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3231rabbidva 3453 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}} = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1})
3332fveq2d 6656 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
34 dfphi2 16100 . . . 4 ((𝑂𝐴) ∈ ℕ → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
35343ad2ant3 1132 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
3633, 35eqtr4d 2860 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (ϕ‘(𝑂𝐴)))
373, 18, 363eqtr3a 2881 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  {crab 3134  wss 3908  {csn 4539   class class class wbr 5042  cmpt 5122  ccnv 5531  cima 5535  1-1wf1 6331  1-1-ontowf1o 6333  cfv 6334  (class class class)co 7140  cen 8493  0cc0 10526  1c1 10527  cn 11625  cz 11969  ..^cfzo 13028  chash 13686   gcd cgcd 15832  ϕcphi 16090  Basecbs 16474  mrClscmrc 16845  Grpcgrp 18094  .gcmg 18215  SubGrpcsubg 18264  odcod 18643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-dvds 15599  df-gcd 15833  df-phi 16092  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-0g 16706  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-mulg 18216  df-subg 18267  df-od 18647
This theorem is referenced by:  proot1hash  40074
  Copyright terms: Public domain W3C validator