MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odngen Structured version   Visualization version   GIF version

Theorem odngen 19610
Description: A cyclic subgroup of size (𝑂𝐴) has (ϕ‘(𝑂𝐴)) generators. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x 𝑋 = (Base‘𝐺)
odhash.o 𝑂 = (od‘𝐺)
odhash.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odngen ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥,𝑋

Proof of Theorem odngen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) = (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴))
21mptpreima 6260 . . 3 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}
32fveq2i 6910 . 2 (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}})
4 odhash.x . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2735 . . . . 5 (.g𝐺) = (.g𝐺)
6 odhash.o . . . . 5 𝑂 = (od‘𝐺)
7 odhash.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
84, 5, 6, 7odf1o2 19606 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}))
9 f1ocnv 6861 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(0..^(𝑂𝐴))–1-1-onto→(𝐾‘{𝐴}) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)))
10 f1of1 6848 . . . 4 ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂𝐴)) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
118, 9, 103syl 18 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)))
12 ssrab2 4090 . . 3 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})
13 fvex 6920 . . . . . 6 (𝐾‘{𝐴}) ∈ V
1413rabex 5345 . . . . 5 {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ∈ V
1514f1imaen 9056 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → ((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})
16 hasheni 14384 . . . 4 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1715, 16syl 17 . . 3 (((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ⊆ (𝐾‘{𝐴})) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
1811, 12, 17sylancl 586 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘((𝑦 ∈ (0..^(𝑂𝐴)) ↦ (𝑦(.g𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}))
19 simpl1 1190 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐺 ∈ Grp)
20 simpl2 1191 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝐴𝑋)
21 elfzoelz 13696 . . . . . . . . 9 (𝑦 ∈ (0..^(𝑂𝐴)) → 𝑦 ∈ ℤ)
2221adantl 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → 𝑦 ∈ ℤ)
234, 5, 7cycsubg2cl 19242 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
2419, 20, 22, 23syl3anc 1370 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}))
25 fveqeq2 6916 . . . . . . . 8 (𝑥 = (𝑦(.g𝐺)𝐴) → ((𝑂𝑥) = (𝑂𝐴) ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2625elrab3 3696 . . . . . . 7 ((𝑦(.g𝐺)𝐴) ∈ (𝐾‘{𝐴}) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
2724, 26syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴)))
28 simpl3 1192 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → (𝑂𝐴) ∈ ℕ)
294, 6, 5odmulgeq 19590 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3019, 20, 22, 28, 29syl31anc 1372 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑂‘(𝑦(.g𝐺)𝐴)) = (𝑂𝐴) ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3127, 30bitrd 279 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂𝐴))) → ((𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)} ↔ (𝑦 gcd (𝑂𝐴)) = 1))
3231rabbidva 3440 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}} = {𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1})
3332fveq2d 6911 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
34 dfphi2 16808 . . . 4 ((𝑂𝐴) ∈ ℕ → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
35343ad2ant3 1134 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (ϕ‘(𝑂𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦 gcd (𝑂𝐴)) = 1}))
3633, 35eqtr4d 2778 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑦 ∈ (0..^(𝑂𝐴)) ∣ (𝑦(.g𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}}) = (ϕ‘(𝑂𝐴)))
373, 18, 363eqtr3a 2799 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) ∈ ℕ) → (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂𝑥) = (𝑂𝐴)}) = (ϕ‘(𝑂𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231  ccnv 5688  cima 5692  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cen 8981  0cc0 11153  1c1 11154  cn 12264  cz 12611  ..^cfzo 13691  chash 14366   gcd cgcd 16528  ϕcphi 16798  Basecbs 17245  mrClscmrc 17628  Grpcgrp 18964  .gcmg 19098  SubGrpcsubg 19151  odcod 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-phi 16800  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-od 19561
This theorem is referenced by:  proot1hash  43184
  Copyright terms: Public domain W3C validator