Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ (𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) = (𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) |
2 | 1 | mptpreima 6141 |
. . 3
⊢ (◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}) = {𝑦 ∈ (0..^(𝑂‘𝐴)) ∣ (𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}} |
3 | 2 | fveq2i 6777 |
. 2
⊢
(♯‘(◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)})) = (♯‘{𝑦 ∈ (0..^(𝑂‘𝐴)) ∣ (𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}}) |
4 | | odhash.x |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
5 | | eqid 2738 |
. . . . 5
⊢
(.g‘𝐺) = (.g‘𝐺) |
6 | | odhash.o |
. . . . 5
⊢ 𝑂 = (od‘𝐺) |
7 | | odhash.k |
. . . . 5
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
8 | 4, 5, 6, 7 | odf1o2 19178 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(0..^(𝑂‘𝐴))–1-1-onto→(𝐾‘{𝐴})) |
9 | | f1ocnv 6728 |
. . . 4
⊢ ((𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(0..^(𝑂‘𝐴))–1-1-onto→(𝐾‘{𝐴}) → ◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂‘𝐴))) |
10 | | f1of1 6715 |
. . . 4
⊢ (◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(𝐾‘{𝐴})–1-1-onto→(0..^(𝑂‘𝐴)) → ◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂‘𝐴))) |
11 | 8, 9, 10 | 3syl 18 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → ◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂‘𝐴))) |
12 | | ssrab2 4013 |
. . 3
⊢ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} ⊆ (𝐾‘{𝐴}) |
13 | | fvex 6787 |
. . . . . 6
⊢ (𝐾‘{𝐴}) ∈ V |
14 | 13 | rabex 5256 |
. . . . 5
⊢ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} ∈ V |
15 | 14 | f1imaen 8802 |
. . . 4
⊢ ((◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂‘𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} ⊆ (𝐾‘{𝐴})) → (◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}) |
16 | | hasheni 14062 |
. . . 4
⊢ ((◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}) ≈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} → (♯‘(◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)})) |
17 | 15, 16 | syl 17 |
. . 3
⊢ ((◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)):(𝐾‘{𝐴})–1-1→(0..^(𝑂‘𝐴)) ∧ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} ⊆ (𝐾‘{𝐴})) → (♯‘(◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)})) |
18 | 11, 12, 17 | sylancl 586 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘(◡(𝑦 ∈ (0..^(𝑂‘𝐴)) ↦ (𝑦(.g‘𝐺)𝐴)) “ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)})) = (♯‘{𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)})) |
19 | | simpl1 1190 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → 𝐺 ∈ Grp) |
20 | | simpl2 1191 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → 𝐴 ∈ 𝑋) |
21 | | elfzoelz 13387 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0..^(𝑂‘𝐴)) → 𝑦 ∈ ℤ) |
22 | 21 | adantl 482 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → 𝑦 ∈ ℤ) |
23 | 4, 5, 7 | cycsubg2cl 18830 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ) → (𝑦(.g‘𝐺)𝐴) ∈ (𝐾‘{𝐴})) |
24 | 19, 20, 22, 23 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → (𝑦(.g‘𝐺)𝐴) ∈ (𝐾‘{𝐴})) |
25 | | fveqeq2 6783 |
. . . . . . . 8
⊢ (𝑥 = (𝑦(.g‘𝐺)𝐴) → ((𝑂‘𝑥) = (𝑂‘𝐴) ↔ (𝑂‘(𝑦(.g‘𝐺)𝐴)) = (𝑂‘𝐴))) |
26 | 25 | elrab3 3625 |
. . . . . . 7
⊢ ((𝑦(.g‘𝐺)𝐴) ∈ (𝐾‘{𝐴}) → ((𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} ↔ (𝑂‘(𝑦(.g‘𝐺)𝐴)) = (𝑂‘𝐴))) |
27 | 24, 26 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → ((𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} ↔ (𝑂‘(𝑦(.g‘𝐺)𝐴)) = (𝑂‘𝐴))) |
28 | | simpl3 1192 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → (𝑂‘𝐴) ∈ ℕ) |
29 | 4, 6, 5 | odmulgeq 19164 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘(𝑦(.g‘𝐺)𝐴)) = (𝑂‘𝐴) ↔ (𝑦 gcd (𝑂‘𝐴)) = 1)) |
30 | 19, 20, 22, 28, 29 | syl31anc 1372 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → ((𝑂‘(𝑦(.g‘𝐺)𝐴)) = (𝑂‘𝐴) ↔ (𝑦 gcd (𝑂‘𝐴)) = 1)) |
31 | 27, 30 | bitrd 278 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0..^(𝑂‘𝐴))) → ((𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)} ↔ (𝑦 gcd (𝑂‘𝐴)) = 1)) |
32 | 31 | rabbidva 3413 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) → {𝑦 ∈ (0..^(𝑂‘𝐴)) ∣ (𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}} = {𝑦 ∈ (0..^(𝑂‘𝐴)) ∣ (𝑦 gcd (𝑂‘𝐴)) = 1}) |
33 | 32 | fveq2d 6778 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘{𝑦 ∈
(0..^(𝑂‘𝐴)) ∣ (𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}}) = (♯‘{𝑦 ∈ (0..^(𝑂‘𝐴)) ∣ (𝑦 gcd (𝑂‘𝐴)) = 1})) |
34 | | dfphi2 16475 |
. . . 4
⊢ ((𝑂‘𝐴) ∈ ℕ → (ϕ‘(𝑂‘𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂‘𝐴)) ∣ (𝑦 gcd (𝑂‘𝐴)) = 1})) |
35 | 34 | 3ad2ant3 1134 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) →
(ϕ‘(𝑂‘𝐴)) = (♯‘{𝑦 ∈ (0..^(𝑂‘𝐴)) ∣ (𝑦 gcd (𝑂‘𝐴)) = 1})) |
36 | 33, 35 | eqtr4d 2781 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘{𝑦 ∈
(0..^(𝑂‘𝐴)) ∣ (𝑦(.g‘𝐺)𝐴) ∈ {𝑥 ∈ (𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}}) = (ϕ‘(𝑂‘𝐴))) |
37 | 3, 18, 36 | 3eqtr3a 2802 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘{𝑥 ∈
(𝐾‘{𝐴}) ∣ (𝑂‘𝑥) = (𝑂‘𝐴)}) = (ϕ‘(𝑂‘𝐴))) |