Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . 3
⊢ (𝑛 = (𝑝↑𝑘) → (Λ‘𝑛) = (Λ‘(𝑝↑𝑘))) |
2 | | fzfid 13693 |
. . . 4
⊢ (𝐴 ∈ ℕ →
(1...𝐴) ∈
Fin) |
3 | | dvdsssfz1 16027 |
. . . 4
⊢ (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} ⊆ (1...𝐴)) |
4 | 2, 3 | ssfid 9042 |
. . 3
⊢ (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} ∈ Fin) |
5 | | ssrab2 4013 |
. . . 4
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} ⊆ ℕ |
6 | 5 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} ⊆ ℕ) |
7 | | inss1 4162 |
. . . 4
⊢
((1...𝐴) ∩
ℙ) ⊆ (1...𝐴) |
8 | | ssfi 8956 |
. . . 4
⊢
(((1...𝐴) ∈ Fin
∧ ((1...𝐴) ∩
ℙ) ⊆ (1...𝐴))
→ ((1...𝐴) ∩
ℙ) ∈ Fin) |
9 | 2, 7, 8 | sylancl 586 |
. . 3
⊢ (𝐴 ∈ ℕ →
((1...𝐴) ∩ ℙ)
∈ Fin) |
10 | | pccl 16550 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
11 | 10 | ancoms 459 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
12 | 11 | nn0zd 12424 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ) |
13 | | fznn 13324 |
. . . . . . . 8
⊢ ((𝑝 pCnt 𝐴) ∈ ℤ → (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)))) |
14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)))) |
15 | 14 | anbi2d 629 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))))) |
16 | | an12 642 |
. . . . . . 7
⊢ ((𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)))) |
17 | | prmz 16380 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
18 | 17 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈
ℤ) |
19 | | iddvdsexp 15989 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℤ ∧ 𝑘 ∈ ℕ) → 𝑝 ∥ (𝑝↑𝑘)) |
20 | 18, 19 | sylan 580 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∥ (𝑝↑𝑘)) |
21 | 17 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈
ℤ) |
22 | | prmnn 16379 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℕ) |
23 | 22 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈
ℕ) |
24 | | nnnn0 12240 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
25 | | nnexpcl 13795 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑝↑𝑘) ∈
ℕ) |
26 | 23, 24, 25 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ∈ ℕ) |
27 | 26 | nnzd 12425 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ∈ ℤ) |
28 | | nnz 12342 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
29 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈
ℤ) |
30 | | dvdstr 16003 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℤ ∧ (𝑝↑𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝑝 ∥ (𝑝↑𝑘) ∧ (𝑝↑𝑘) ∥ 𝐴) → 𝑝 ∥ 𝐴)) |
31 | 21, 27, 29, 30 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∥ (𝑝↑𝑘) ∧ (𝑝↑𝑘) ∥ 𝐴) → 𝑝 ∥ 𝐴)) |
32 | 20, 31 | mpand 692 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝↑𝑘) ∥ 𝐴 → 𝑝 ∥ 𝐴)) |
33 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈
ℕ) |
34 | | dvdsle 16019 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴)) |
35 | 21, 33, 34 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴)) |
36 | 32, 35 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝↑𝑘) ∥ 𝐴 → 𝑝 ≤ 𝐴)) |
37 | 22 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈
ℕ) |
38 | | fznn 13324 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → (𝑝 ∈ (1...𝐴) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴))) |
39 | 38 | baibd 540 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑝 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ 𝑝 ≤ 𝐴)) |
40 | 29, 37, 39 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑝 ∈ (1...𝐴) ↔ 𝑝 ≤ 𝐴)) |
41 | 36, 40 | sylibrd 258 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝↑𝑘) ∥ 𝐴 → 𝑝 ∈ (1...𝐴))) |
42 | 41 | pm4.71rd 563 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝↑𝑘) ∥ 𝐴 ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝↑𝑘) ∥ 𝐴))) |
43 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑝↑𝑘) → (𝑥 ∥ 𝐴 ↔ (𝑝↑𝑘) ∥ 𝐴)) |
44 | 43 | elrab3 3625 |
. . . . . . . . . 10
⊢ ((𝑝↑𝑘) ∈ ℕ → ((𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} ↔ (𝑝↑𝑘) ∥ 𝐴)) |
45 | 26, 44 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} ↔ (𝑝↑𝑘) ∥ 𝐴)) |
46 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈
ℙ) |
47 | 24 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
ℕ0) |
48 | | pcdvdsb 16570 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝑘 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑𝑘) ∥ 𝐴)) |
49 | 46, 29, 47, 48 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑𝑘) ∥ 𝐴)) |
50 | 49 | anbi2d 629 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝↑𝑘) ∥ 𝐴))) |
51 | 42, 45, 50 | 3bitr4rd 312 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴)) ↔ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴})) |
52 | 51 | pm5.32da 579 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑘 ∈ ℕ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}))) |
53 | 16, 52 | bitrid 282 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ (𝑘 ∈ ℕ ∧ 𝑘 ≤ (𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}))) |
54 | 15, 53 | bitrd 278 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑘 ∈ ℕ ∧ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}))) |
55 | 54 | pm5.32da 579 |
. . . 4
⊢ (𝐴 ∈ ℕ → ((𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))) ↔ (𝑝 ∈ ℙ ∧ (𝑘 ∈ ℕ ∧ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴})))) |
56 | | elin 3903 |
. . . . . 6
⊢ (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ)) |
57 | 56 | anbi1i 624 |
. . . . 5
⊢ ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ ((𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))) |
58 | | anass 469 |
. . . . 5
⊢ (((𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ (1...𝐴) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))))) |
59 | | an12 642 |
. . . . 5
⊢ ((𝑝 ∈ (1...𝐴) ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴)))) ↔ (𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))))) |
60 | 57, 58, 59 | 3bitri 297 |
. . . 4
⊢ ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ (𝑝 ∈ ℙ ∧ (𝑝 ∈ (1...𝐴) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))))) |
61 | | anass 469 |
. . . 4
⊢ (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}) ↔ (𝑝 ∈ ℙ ∧ (𝑘 ∈ ℕ ∧ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}))) |
62 | 55, 60, 61 | 3bitr4g 314 |
. . 3
⊢ (𝐴 ∈ ℕ → ((𝑝 ∈ ((1...𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝↑𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}))) |
63 | 6 | sselda 3921 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}) → 𝑛 ∈ ℕ) |
64 | | vmacl 26267 |
. . . . 5
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
65 | 63, 64 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}) → (Λ‘𝑛) ∈ ℝ) |
66 | 65 | recnd 11003 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴}) → (Λ‘𝑛) ∈ ℂ) |
67 | | simprr 770 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} ∧ (Λ‘𝑛) = 0)) → (Λ‘𝑛) = 0) |
68 | 1, 4, 6, 9, 62, 66, 67 | fsumvma 26361 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} (Λ‘𝑛) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝↑𝑘))) |
69 | | elinel2 4130 |
. . . . . . 7
⊢ (𝑝 ∈ ((1...𝐴) ∩ ℙ) → 𝑝 ∈ ℙ) |
70 | 69 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → 𝑝 ∈ ℙ) |
71 | | elfznn 13285 |
. . . . . . 7
⊢ (𝑘 ∈ (1...(𝑝 pCnt 𝐴)) → 𝑘 ∈ ℕ) |
72 | 71 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → 𝑘 ∈ ℕ) |
73 | | vmappw 26265 |
. . . . . 6
⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) →
(Λ‘(𝑝↑𝑘)) = (log‘𝑝)) |
74 | 70, 72, 73 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) ∧ 𝑘 ∈ (1...(𝑝 pCnt 𝐴))) → (Λ‘(𝑝↑𝑘)) = (log‘𝑝)) |
75 | 74 | sumeq2dv 15415 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝↑𝑘)) = Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝)) |
76 | | fzfid 13693 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (1...(𝑝 pCnt 𝐴)) ∈ Fin) |
77 | 69, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝑝 ∈ ((1...𝐴) ∩ ℙ) → 𝑝 ∈ ℕ) |
78 | 77 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ) |
79 | 78 | nnrpd 12770 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+) |
80 | 79 | relogcld 25778 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℝ) |
81 | 80 | recnd 11003 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑝) ∈
ℂ) |
82 | | fsumconst 15502 |
. . . . 5
⊢
(((1...(𝑝 pCnt 𝐴)) ∈ Fin ∧
(log‘𝑝) ∈
ℂ) → Σ𝑘
∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝) = ((♯‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝))) |
83 | 76, 81, 82 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(log‘𝑝) = ((♯‘(1...(𝑝 pCnt 𝐴))) · (log‘𝑝))) |
84 | 69, 11 | sylan2 593 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈
ℕ0) |
85 | | hashfz1 14060 |
. . . . . 6
⊢ ((𝑝 pCnt 𝐴) ∈ ℕ0 →
(♯‘(1...(𝑝 pCnt
𝐴))) = (𝑝 pCnt 𝐴)) |
86 | 84, 85 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) →
(♯‘(1...(𝑝 pCnt
𝐴))) = (𝑝 pCnt 𝐴)) |
87 | 86 | oveq1d 7290 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) →
((♯‘(1...(𝑝
pCnt 𝐴))) ·
(log‘𝑝)) = ((𝑝 pCnt 𝐴) · (log‘𝑝))) |
88 | 75, 83, 87 | 3eqtrd 2782 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝↑𝑘)) = ((𝑝 pCnt 𝐴) · (log‘𝑝))) |
89 | 88 | sumeq2dv 15415 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(𝑝 pCnt 𝐴))(Λ‘(𝑝↑𝑘)) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝))) |
90 | | pclogsum 26363 |
. 2
⊢ (𝐴 ∈ ℕ →
Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴)) |
91 | 68, 89, 90 | 3eqtrd 2782 |
1
⊢ (𝐴 ∈ ℕ →
Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝐴} (Λ‘𝑛) = (log‘𝐴)) |