Step | Hyp | Ref
| Expression |
1 | | fveq2 6888 |
. . . . 5
β’ (π = (0gβπ) β (πβπ) = (πβ(0gβπ))) |
2 | 1 | fveq2d 6892 |
. . . 4
β’ (π = (0gβπ) β (πβ(πβπ)) = (πβ(πβ(0gβπ)))) |
3 | | sneq 4637 |
. . . . 5
β’ (π = (0gβπ) β {π} = {(0gβπ)}) |
4 | 3 | fveq2d 6892 |
. . . 4
β’ (π = (0gβπ) β (πβ{π}) = (πβ{(0gβπ)})) |
5 | 2, 4 | sseq12d 4014 |
. . 3
β’ (π = (0gβπ) β ((πβ(πβπ)) β (πβ{π}) β (πβ(πβ(0gβπ))) β (πβ{(0gβπ)}))) |
6 | | hdmaplkr.h |
. . . . . . . . . 10
β’ π» = (LHypβπΎ) |
7 | | eqid 2732 |
. . . . . . . . . 10
β’
((LCDualβπΎ)βπ) = ((LCDualβπΎ)βπ) |
8 | | hdmaplkr.k |
. . . . . . . . . 10
β’ (π β (πΎ β HL β§ π β π»)) |
9 | 6, 7, 8 | lcdlmod 40451 |
. . . . . . . . 9
β’ (π β ((LCDualβπΎ)βπ) β LMod) |
10 | | hdmaplkr.u |
. . . . . . . . . 10
β’ π = ((DVecHβπΎ)βπ) |
11 | | hdmaplkr.v |
. . . . . . . . . 10
β’ π = (Baseβπ) |
12 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβ((LCDualβπΎ)βπ)) = (Baseβ((LCDualβπΎ)βπ)) |
13 | | hdmaplkr.s |
. . . . . . . . . 10
β’ π = ((HDMapβπΎ)βπ) |
14 | | hdmaplkr.x |
. . . . . . . . . 10
β’ (π β π β π) |
15 | 6, 10, 11, 7, 12, 13, 8, 14 | hdmapcl 40689 |
. . . . . . . . 9
β’ (π β (πβπ) β (Baseβ((LCDualβπΎ)βπ))) |
16 | | eqid 2732 |
. . . . . . . . . 10
β’
(LSpanβ((LCDualβπΎ)βπ)) = (LSpanβ((LCDualβπΎ)βπ)) |
17 | 12, 16 | lspsnid 20596 |
. . . . . . . . 9
β’
((((LCDualβπΎ)βπ) β LMod β§ (πβπ) β (Baseβ((LCDualβπΎ)βπ))) β (πβπ) β ((LSpanβ((LCDualβπΎ)βπ))β{(πβπ)})) |
18 | 9, 15, 17 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πβπ) β ((LSpanβ((LCDualβπΎ)βπ))β{(πβπ)})) |
19 | | eqid 2732 |
. . . . . . . . . 10
β’
(LSpanβπ) =
(LSpanβπ) |
20 | | eqid 2732 |
. . . . . . . . . 10
β’
((mapdβπΎ)βπ) = ((mapdβπΎ)βπ) |
21 | 6, 10, 11, 19, 7, 16, 20, 13, 8, 14 | hdmap10 40699 |
. . . . . . . . 9
β’ (π β (((mapdβπΎ)βπ)β((LSpanβπ)β{π})) = ((LSpanβ((LCDualβπΎ)βπ))β{(πβπ)})) |
22 | | hdmaplkr.o |
. . . . . . . . . 10
β’ π = ((ocHβπΎ)βπ) |
23 | | eqid 2732 |
. . . . . . . . . 10
β’
(LFnlβπ) =
(LFnlβπ) |
24 | | hdmaplkr.y |
. . . . . . . . . 10
β’ π = (LKerβπ) |
25 | 6, 22, 20, 10, 11, 19, 23, 24, 8, 14 | mapdsn 40500 |
. . . . . . . . 9
β’ (π β (((mapdβπΎ)βπ)β((LSpanβπ)β{π})) = {π β (LFnlβπ) β£ (πβ{π}) β (πβπ)}) |
26 | 21, 25 | eqtr3d 2774 |
. . . . . . . 8
β’ (π β
((LSpanβ((LCDualβπΎ)βπ))β{(πβπ)}) = {π β (LFnlβπ) β£ (πβ{π}) β (πβπ)}) |
27 | 18, 26 | eleqtrd 2835 |
. . . . . . 7
β’ (π β (πβπ) β {π β (LFnlβπ) β£ (πβ{π}) β (πβπ)}) |
28 | 6, 7, 12, 10, 23, 8, 15 | lcdvbaselfl 40454 |
. . . . . . . 8
β’ (π β (πβπ) β (LFnlβπ)) |
29 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = (πβπ) β (πβπ) = (πβ(πβπ))) |
30 | 29 | sseq2d 4013 |
. . . . . . . . 9
β’ (π = (πβπ) β ((πβ{π}) β (πβπ) β (πβ{π}) β (πβ(πβπ)))) |
31 | 30 | elrab3 3683 |
. . . . . . . 8
β’ ((πβπ) β (LFnlβπ) β ((πβπ) β {π β (LFnlβπ) β£ (πβ{π}) β (πβπ)} β (πβ{π}) β (πβ(πβπ)))) |
32 | 28, 31 | syl 17 |
. . . . . . 7
β’ (π β ((πβπ) β {π β (LFnlβπ) β£ (πβ{π}) β (πβπ)} β (πβ{π}) β (πβ(πβπ)))) |
33 | 27, 32 | mpbid 231 |
. . . . . 6
β’ (π β (πβ{π}) β (πβ(πβπ))) |
34 | 33 | adantr 481 |
. . . . 5
β’ ((π β§ π β (0gβπ)) β (πβ{π}) β (πβ(πβπ))) |
35 | | eqid 2732 |
. . . . . 6
β’
(LSHypβπ) =
(LSHypβπ) |
36 | 6, 10, 8 | dvhlvec 39968 |
. . . . . . 7
β’ (π β π β LVec) |
37 | 36 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (0gβπ)) β π β LVec) |
38 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
39 | 8 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0gβπ)) β (πΎ β HL β§ π β π»)) |
40 | 14 | anim1i 615 |
. . . . . . . 8
β’ ((π β§ π β (0gβπ)) β (π β π β§ π β (0gβπ))) |
41 | | eldifsn 4789 |
. . . . . . . 8
β’ (π β (π β {(0gβπ)}) β (π β π β§ π β (0gβπ))) |
42 | 40, 41 | sylibr 233 |
. . . . . . 7
β’ ((π β§ π β (0gβπ)) β π β (π β {(0gβπ)})) |
43 | 6, 22, 10, 11, 38, 35, 39, 42 | dochsnshp 40312 |
. . . . . 6
β’ ((π β§ π β (0gβπ)) β (πβ{π}) β (LSHypβπ)) |
44 | 28 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0gβπ)) β (πβπ) β (LFnlβπ)) |
45 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Scalarβπ) =
(Scalarβπ) |
46 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
47 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβ((LCDualβπΎ)βπ)) =
(0gβ((LCDualβπΎ)βπ)) |
48 | 6, 10, 11, 45, 46, 7, 47, 8 | lcd0v 40470 |
. . . . . . . . . . 11
β’ (π β
(0gβ((LCDualβπΎ)βπ)) = (π Γ
{(0gβ(Scalarβπ))})) |
49 | 48 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π β ((πβπ) =
(0gβ((LCDualβπΎ)βπ)) β (πβπ) = (π Γ
{(0gβ(Scalarβπ))}))) |
50 | 6, 10, 11, 38, 7, 47, 13, 8, 14 | hdmapeq0 40703 |
. . . . . . . . . 10
β’ (π β ((πβπ) =
(0gβ((LCDualβπΎ)βπ)) β π = (0gβπ))) |
51 | 49, 50 | bitr3d 280 |
. . . . . . . . 9
β’ (π β ((πβπ) = (π Γ
{(0gβ(Scalarβπ))}) β π = (0gβπ))) |
52 | 51 | necon3bid 2985 |
. . . . . . . 8
β’ (π β ((πβπ) β (π Γ
{(0gβ(Scalarβπ))}) β π β (0gβπ))) |
53 | 52 | biimpar 478 |
. . . . . . 7
β’ ((π β§ π β (0gβπ)) β (πβπ) β (π Γ
{(0gβ(Scalarβπ))})) |
54 | 11, 45, 46, 35, 23, 24 | lkrshp 37963 |
. . . . . . 7
β’ ((π β LVec β§ (πβπ) β (LFnlβπ) β§ (πβπ) β (π Γ
{(0gβ(Scalarβπ))})) β (πβ(πβπ)) β (LSHypβπ)) |
55 | 37, 44, 53, 54 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ π β (0gβπ)) β (πβ(πβπ)) β (LSHypβπ)) |
56 | 35, 37, 43, 55 | lshpcmp 37846 |
. . . . 5
β’ ((π β§ π β (0gβπ)) β ((πβ{π}) β (πβ(πβπ)) β (πβ{π}) = (πβ(πβπ)))) |
57 | 34, 56 | mpbid 231 |
. . . 4
β’ ((π β§ π β (0gβπ)) β (πβ{π}) = (πβ(πβπ))) |
58 | | eqimss2 4040 |
. . . 4
β’ ((πβ{π}) = (πβ(πβπ)) β (πβ(πβπ)) β (πβ{π})) |
59 | 57, 58 | syl 17 |
. . 3
β’ ((π β§ π β (0gβπ)) β (πβ(πβπ)) β (πβ{π})) |
60 | 6, 10, 8 | dvhlmod 39969 |
. . . . 5
β’ (π β π β LMod) |
61 | 11, 38 | lmod0vcl 20493 |
. . . . . . . 8
β’ (π β LMod β
(0gβπ)
β π) |
62 | 60, 61 | syl 17 |
. . . . . . 7
β’ (π β (0gβπ) β π) |
63 | 6, 10, 11, 7, 12, 13, 8, 62 | hdmapcl 40689 |
. . . . . 6
β’ (π β (πβ(0gβπ)) β
(Baseβ((LCDualβπΎ)βπ))) |
64 | 6, 7, 12, 10, 23, 8, 63 | lcdvbaselfl 40454 |
. . . . 5
β’ (π β (πβ(0gβπ)) β (LFnlβπ)) |
65 | 11, 23, 24, 60, 64 | lkrssv 37954 |
. . . 4
β’ (π β (πβ(πβ(0gβπ))) β π) |
66 | 6, 10, 22, 11, 38 | doch0 40217 |
. . . . 5
β’ ((πΎ β HL β§ π β π») β (πβ{(0gβπ)}) = π) |
67 | 8, 66 | syl 17 |
. . . 4
β’ (π β (πβ{(0gβπ)}) = π) |
68 | 65, 67 | sseqtrrd 4022 |
. . 3
β’ (π β (πβ(πβ(0gβπ))) β (πβ{(0gβπ)})) |
69 | 5, 59, 68 | pm2.61ne 3027 |
. 2
β’ (π β (πβ(πβπ)) β (πβ{π})) |
70 | 69, 33 | eqssd 3998 |
1
β’ (π β (πβ(πβπ)) = (πβ{π})) |