Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaplkr Structured version   Visualization version   GIF version

Theorem hdmaplkr 41907
Description: Kernel of the vector to dual map. Line 16 in [Holland95] p. 14. TODO: eliminate 𝐹 hypothesis. (Contributed by NM, 9-Jun-2015.)
Hypotheses
Ref Expression
hdmaplkr.h 𝐻 = (LHyp‘𝐾)
hdmaplkr.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmaplkr.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaplkr.v 𝑉 = (Base‘𝑈)
hdmaplkr.f 𝐹 = (LFnl‘𝑈)
hdmaplkr.y 𝑌 = (LKer‘𝑈)
hdmaplkr.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaplkr.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaplkr.x (𝜑𝑋𝑉)
Assertion
Ref Expression
hdmaplkr (𝜑 → (𝑌‘(𝑆𝑋)) = (𝑂‘{𝑋}))

Proof of Theorem hdmaplkr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . 5 (𝑋 = (0g𝑈) → (𝑆𝑋) = (𝑆‘(0g𝑈)))
21fveq2d 6862 . . . 4 (𝑋 = (0g𝑈) → (𝑌‘(𝑆𝑋)) = (𝑌‘(𝑆‘(0g𝑈))))
3 sneq 4599 . . . . 5 (𝑋 = (0g𝑈) → {𝑋} = {(0g𝑈)})
43fveq2d 6862 . . . 4 (𝑋 = (0g𝑈) → (𝑂‘{𝑋}) = (𝑂‘{(0g𝑈)}))
52, 4sseq12d 3980 . . 3 (𝑋 = (0g𝑈) → ((𝑌‘(𝑆𝑋)) ⊆ (𝑂‘{𝑋}) ↔ (𝑌‘(𝑆‘(0g𝑈))) ⊆ (𝑂‘{(0g𝑈)})))
6 hdmaplkr.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
7 eqid 2729 . . . . . . . . . 10 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
8 hdmaplkr.k . . . . . . . . . 10 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
96, 7, 8lcdlmod 41586 . . . . . . . . 9 (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod)
10 hdmaplkr.u . . . . . . . . . 10 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 hdmaplkr.v . . . . . . . . . 10 𝑉 = (Base‘𝑈)
12 eqid 2729 . . . . . . . . . 10 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
13 hdmaplkr.s . . . . . . . . . 10 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmaplkr.x . . . . . . . . . 10 (𝜑𝑋𝑉)
156, 10, 11, 7, 12, 13, 8, 14hdmapcl 41824 . . . . . . . . 9 (𝜑 → (𝑆𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
16 eqid 2729 . . . . . . . . . 10 (LSpan‘((LCDual‘𝐾)‘𝑊)) = (LSpan‘((LCDual‘𝐾)‘𝑊))
1712, 16lspsnid 20899 . . . . . . . . 9 ((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑆𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) → (𝑆𝑋) ∈ ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆𝑋)}))
189, 15, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝑆𝑋) ∈ ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆𝑋)}))
19 eqid 2729 . . . . . . . . . 10 (LSpan‘𝑈) = (LSpan‘𝑈)
20 eqid 2729 . . . . . . . . . 10 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
216, 10, 11, 19, 7, 16, 20, 13, 8, 14hdmap10 41834 . . . . . . . . 9 (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋})) = ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆𝑋)}))
22 hdmaplkr.o . . . . . . . . . 10 𝑂 = ((ocH‘𝐾)‘𝑊)
23 eqid 2729 . . . . . . . . . 10 (LFnl‘𝑈) = (LFnl‘𝑈)
24 hdmaplkr.y . . . . . . . . . 10 𝑌 = (LKer‘𝑈)
256, 22, 20, 10, 11, 19, 23, 24, 8, 14mapdsn 41635 . . . . . . . . 9 (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋})) = {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌𝑓)})
2621, 25eqtr3d 2766 . . . . . . . 8 (𝜑 → ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆𝑋)}) = {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌𝑓)})
2718, 26eleqtrd 2830 . . . . . . 7 (𝜑 → (𝑆𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌𝑓)})
286, 7, 12, 10, 23, 8, 15lcdvbaselfl 41589 . . . . . . . 8 (𝜑 → (𝑆𝑋) ∈ (LFnl‘𝑈))
29 fveq2 6858 . . . . . . . . . 10 (𝑓 = (𝑆𝑋) → (𝑌𝑓) = (𝑌‘(𝑆𝑋)))
3029sseq2d 3979 . . . . . . . . 9 (𝑓 = (𝑆𝑋) → ((𝑂‘{𝑋}) ⊆ (𝑌𝑓) ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆𝑋))))
3130elrab3 3660 . . . . . . . 8 ((𝑆𝑋) ∈ (LFnl‘𝑈) → ((𝑆𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌𝑓)} ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆𝑋))))
3228, 31syl 17 . . . . . . 7 (𝜑 → ((𝑆𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌𝑓)} ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆𝑋))))
3327, 32mpbid 232 . . . . . 6 (𝜑 → (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆𝑋)))
3433adantr 480 . . . . 5 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆𝑋)))
35 eqid 2729 . . . . . 6 (LSHyp‘𝑈) = (LSHyp‘𝑈)
366, 10, 8dvhlvec 41103 . . . . . . 7 (𝜑𝑈 ∈ LVec)
3736adantr 480 . . . . . 6 ((𝜑𝑋 ≠ (0g𝑈)) → 𝑈 ∈ LVec)
38 eqid 2729 . . . . . . 7 (0g𝑈) = (0g𝑈)
398adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4014anim1i 615 . . . . . . . 8 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑋𝑉𝑋 ≠ (0g𝑈)))
41 eldifsn 4750 . . . . . . . 8 (𝑋 ∈ (𝑉 ∖ {(0g𝑈)}) ↔ (𝑋𝑉𝑋 ≠ (0g𝑈)))
4240, 41sylibr 234 . . . . . . 7 ((𝜑𝑋 ≠ (0g𝑈)) → 𝑋 ∈ (𝑉 ∖ {(0g𝑈)}))
436, 22, 10, 11, 38, 35, 39, 42dochsnshp 41447 . . . . . 6 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑂‘{𝑋}) ∈ (LSHyp‘𝑈))
4428adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑆𝑋) ∈ (LFnl‘𝑈))
45 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑈) = (Scalar‘𝑈)
46 eqid 2729 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
47 eqid 2729 . . . . . . . . . . . 12 (0g‘((LCDual‘𝐾)‘𝑊)) = (0g‘((LCDual‘𝐾)‘𝑊))
486, 10, 11, 45, 46, 7, 47, 8lcd0v 41605 . . . . . . . . . . 11 (𝜑 → (0g‘((LCDual‘𝐾)‘𝑊)) = (𝑉 × {(0g‘(Scalar‘𝑈))}))
4948eqeq2d 2740 . . . . . . . . . 10 (𝜑 → ((𝑆𝑋) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑆𝑋) = (𝑉 × {(0g‘(Scalar‘𝑈))})))
506, 10, 11, 38, 7, 47, 13, 8, 14hdmapeq0 41838 . . . . . . . . . 10 (𝜑 → ((𝑆𝑋) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑋 = (0g𝑈)))
5149, 50bitr3d 281 . . . . . . . . 9 (𝜑 → ((𝑆𝑋) = (𝑉 × {(0g‘(Scalar‘𝑈))}) ↔ 𝑋 = (0g𝑈)))
5251necon3bid 2969 . . . . . . . 8 (𝜑 → ((𝑆𝑋) ≠ (𝑉 × {(0g‘(Scalar‘𝑈))}) ↔ 𝑋 ≠ (0g𝑈)))
5352biimpar 477 . . . . . . 7 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑆𝑋) ≠ (𝑉 × {(0g‘(Scalar‘𝑈))}))
5411, 45, 46, 35, 23, 24lkrshp 39098 . . . . . . 7 ((𝑈 ∈ LVec ∧ (𝑆𝑋) ∈ (LFnl‘𝑈) ∧ (𝑆𝑋) ≠ (𝑉 × {(0g‘(Scalar‘𝑈))})) → (𝑌‘(𝑆𝑋)) ∈ (LSHyp‘𝑈))
5537, 44, 53, 54syl3anc 1373 . . . . . 6 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑌‘(𝑆𝑋)) ∈ (LSHyp‘𝑈))
5635, 37, 43, 55lshpcmp 38981 . . . . 5 ((𝜑𝑋 ≠ (0g𝑈)) → ((𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆𝑋)) ↔ (𝑂‘{𝑋}) = (𝑌‘(𝑆𝑋))))
5734, 56mpbid 232 . . . 4 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑂‘{𝑋}) = (𝑌‘(𝑆𝑋)))
58 eqimss2 4006 . . . 4 ((𝑂‘{𝑋}) = (𝑌‘(𝑆𝑋)) → (𝑌‘(𝑆𝑋)) ⊆ (𝑂‘{𝑋}))
5957, 58syl 17 . . 3 ((𝜑𝑋 ≠ (0g𝑈)) → (𝑌‘(𝑆𝑋)) ⊆ (𝑂‘{𝑋}))
606, 10, 8dvhlmod 41104 . . . . 5 (𝜑𝑈 ∈ LMod)
6111, 38lmod0vcl 20797 . . . . . . . 8 (𝑈 ∈ LMod → (0g𝑈) ∈ 𝑉)
6260, 61syl 17 . . . . . . 7 (𝜑 → (0g𝑈) ∈ 𝑉)
636, 10, 11, 7, 12, 13, 8, 62hdmapcl 41824 . . . . . 6 (𝜑 → (𝑆‘(0g𝑈)) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
646, 7, 12, 10, 23, 8, 63lcdvbaselfl 41589 . . . . 5 (𝜑 → (𝑆‘(0g𝑈)) ∈ (LFnl‘𝑈))
6511, 23, 24, 60, 64lkrssv 39089 . . . 4 (𝜑 → (𝑌‘(𝑆‘(0g𝑈))) ⊆ 𝑉)
666, 10, 22, 11, 38doch0 41352 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑂‘{(0g𝑈)}) = 𝑉)
678, 66syl 17 . . . 4 (𝜑 → (𝑂‘{(0g𝑈)}) = 𝑉)
6865, 67sseqtrrd 3984 . . 3 (𝜑 → (𝑌‘(𝑆‘(0g𝑈))) ⊆ (𝑂‘{(0g𝑈)}))
695, 59, 68pm2.61ne 3010 . 2 (𝜑 → (𝑌‘(𝑆𝑋)) ⊆ (𝑂‘{𝑋}))
7069, 33eqssd 3964 1 (𝜑 → (𝑌‘(𝑆𝑋)) = (𝑂‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3405  cdif 3911  wss 3914  {csn 4589   × cxp 5636  cfv 6511  Basecbs 17179  Scalarcsca 17223  0gc0g 17402  LModclmod 20766  LSpanclspn 20877  LVecclvec 21009  LSHypclsh 38968  LFnlclfn 39050  LKerclk 39078  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  ocHcoch 41341  LCDualclcd 41580  mapdcmpd 41618  HDMapchdma 41786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-nzr 20422  df-rlreg 20603  df-domn 20604  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-lshyp 38970  df-lcv 39012  df-lfl 39051  df-lkr 39079  df-ldual 39117  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tgrp 40737  df-tendo 40749  df-edring 40751  df-dveca 40997  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342  df-djh 41389  df-lcdual 41581  df-mapd 41619  df-hvmap 41751  df-hdmap1 41787  df-hdmap 41788
This theorem is referenced by:  hdmapellkr  41908  hdmapip0  41909  hdmapinvlem1  41912
  Copyright terms: Public domain W3C validator