Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . 5
⊢ (𝑋 = (0g‘𝑈) → (𝑆‘𝑋) = (𝑆‘(0g‘𝑈))) |
2 | 1 | fveq2d 6760 |
. . . 4
⊢ (𝑋 = (0g‘𝑈) → (𝑌‘(𝑆‘𝑋)) = (𝑌‘(𝑆‘(0g‘𝑈)))) |
3 | | sneq 4568 |
. . . . 5
⊢ (𝑋 = (0g‘𝑈) → {𝑋} = {(0g‘𝑈)}) |
4 | 3 | fveq2d 6760 |
. . . 4
⊢ (𝑋 = (0g‘𝑈) → (𝑂‘{𝑋}) = (𝑂‘{(0g‘𝑈)})) |
5 | 2, 4 | sseq12d 3950 |
. . 3
⊢ (𝑋 = (0g‘𝑈) → ((𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋}) ↔ (𝑌‘(𝑆‘(0g‘𝑈))) ⊆ (𝑂‘{(0g‘𝑈)}))) |
6 | | hdmaplkr.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) |
8 | | hdmaplkr.k |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | 6, 7, 8 | lcdlmod 39533 |
. . . . . . . . 9
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
10 | | hdmaplkr.u |
. . . . . . . . . 10
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
11 | | hdmaplkr.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑈) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) |
13 | | hdmaplkr.s |
. . . . . . . . . 10
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
14 | | hdmaplkr.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
15 | 6, 10, 11, 7, 12, 13, 8, 14 | hdmapcl 39771 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
16 | | eqid 2738 |
. . . . . . . . . 10
⊢
(LSpan‘((LCDual‘𝐾)‘𝑊)) = (LSpan‘((LCDual‘𝐾)‘𝑊)) |
17 | 12, 16 | lspsnid 20170 |
. . . . . . . . 9
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑆‘𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) → (𝑆‘𝑋) ∈ ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)})) |
18 | 9, 15, 17 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑋) ∈ ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)})) |
19 | | eqid 2738 |
. . . . . . . . . 10
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) |
21 | 6, 10, 11, 19, 7, 16, 20, 13, 8, 14 | hdmap10 39781 |
. . . . . . . . 9
⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋})) = ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)})) |
22 | | hdmaplkr.o |
. . . . . . . . . 10
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(LFnl‘𝑈) =
(LFnl‘𝑈) |
24 | | hdmaplkr.y |
. . . . . . . . . 10
⊢ 𝑌 = (LKer‘𝑈) |
25 | 6, 22, 20, 10, 11, 19, 23, 24, 8, 14 | mapdsn 39582 |
. . . . . . . . 9
⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋})) = {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)}) |
26 | 21, 25 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝜑 →
((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)}) = {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)}) |
27 | 18, 26 | eleqtrd 2841 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)}) |
28 | 6, 7, 12, 10, 23, 8, 15 | lcdvbaselfl 39536 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑋) ∈ (LFnl‘𝑈)) |
29 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑆‘𝑋) → (𝑌‘𝑓) = (𝑌‘(𝑆‘𝑋))) |
30 | 29 | sseq2d 3949 |
. . . . . . . . 9
⊢ (𝑓 = (𝑆‘𝑋) → ((𝑂‘{𝑋}) ⊆ (𝑌‘𝑓) ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)))) |
31 | 30 | elrab3 3618 |
. . . . . . . 8
⊢ ((𝑆‘𝑋) ∈ (LFnl‘𝑈) → ((𝑆‘𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)} ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)))) |
32 | 28, 31 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)} ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)))) |
33 | 27, 32 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋))) |
34 | 33 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋))) |
35 | | eqid 2738 |
. . . . . 6
⊢
(LSHyp‘𝑈) =
(LSHyp‘𝑈) |
36 | 6, 10, 8 | dvhlvec 39050 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LVec) |
37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → 𝑈 ∈ LVec) |
38 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑈) = (0g‘𝑈) |
39 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | 14 | anim1i 614 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑈))) |
41 | | eldifsn 4717 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑈))) |
42 | 40, 41 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → 𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
43 | 6, 22, 10, 11, 38, 35, 39, 42 | dochsnshp 39394 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑂‘{𝑋}) ∈ (LSHyp‘𝑈)) |
44 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑆‘𝑋) ∈ (LFnl‘𝑈)) |
45 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
46 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘(Scalar‘𝑈)) =
(0g‘(Scalar‘𝑈)) |
47 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘((LCDual‘𝐾)‘𝑊)) =
(0g‘((LCDual‘𝐾)‘𝑊)) |
48 | 6, 10, 11, 45, 46, 7, 47, 8 | lcd0v 39552 |
. . . . . . . . . . 11
⊢ (𝜑 →
(0g‘((LCDual‘𝐾)‘𝑊)) = (𝑉 ×
{(0g‘(Scalar‘𝑈))})) |
49 | 48 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘𝑋) =
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑆‘𝑋) = (𝑉 ×
{(0g‘(Scalar‘𝑈))}))) |
50 | 6, 10, 11, 38, 7, 47, 13, 8, 14 | hdmapeq0 39785 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘𝑋) =
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑋 = (0g‘𝑈))) |
51 | 49, 50 | bitr3d 280 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆‘𝑋) = (𝑉 ×
{(0g‘(Scalar‘𝑈))}) ↔ 𝑋 = (0g‘𝑈))) |
52 | 51 | necon3bid 2987 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆‘𝑋) ≠ (𝑉 ×
{(0g‘(Scalar‘𝑈))}) ↔ 𝑋 ≠ (0g‘𝑈))) |
53 | 52 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑆‘𝑋) ≠ (𝑉 ×
{(0g‘(Scalar‘𝑈))})) |
54 | 11, 45, 46, 35, 23, 24 | lkrshp 37046 |
. . . . . . 7
⊢ ((𝑈 ∈ LVec ∧ (𝑆‘𝑋) ∈ (LFnl‘𝑈) ∧ (𝑆‘𝑋) ≠ (𝑉 ×
{(0g‘(Scalar‘𝑈))})) → (𝑌‘(𝑆‘𝑋)) ∈ (LSHyp‘𝑈)) |
55 | 37, 44, 53, 54 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑌‘(𝑆‘𝑋)) ∈ (LSHyp‘𝑈)) |
56 | 35, 37, 43, 55 | lshpcmp 36929 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → ((𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)) ↔ (𝑂‘{𝑋}) = (𝑌‘(𝑆‘𝑋)))) |
57 | 34, 56 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑂‘{𝑋}) = (𝑌‘(𝑆‘𝑋))) |
58 | | eqimss2 3974 |
. . . 4
⊢ ((𝑂‘{𝑋}) = (𝑌‘(𝑆‘𝑋)) → (𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋})) |
59 | 57, 58 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋})) |
60 | 6, 10, 8 | dvhlmod 39051 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ LMod) |
61 | 11, 38 | lmod0vcl 20067 |
. . . . . . . 8
⊢ (𝑈 ∈ LMod →
(0g‘𝑈)
∈ 𝑉) |
62 | 60, 61 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑈) ∈ 𝑉) |
63 | 6, 10, 11, 7, 12, 13, 8, 62 | hdmapcl 39771 |
. . . . . 6
⊢ (𝜑 → (𝑆‘(0g‘𝑈)) ∈
(Base‘((LCDual‘𝐾)‘𝑊))) |
64 | 6, 7, 12, 10, 23, 8, 63 | lcdvbaselfl 39536 |
. . . . 5
⊢ (𝜑 → (𝑆‘(0g‘𝑈)) ∈ (LFnl‘𝑈)) |
65 | 11, 23, 24, 60, 64 | lkrssv 37037 |
. . . 4
⊢ (𝜑 → (𝑌‘(𝑆‘(0g‘𝑈))) ⊆ 𝑉) |
66 | 6, 10, 22, 11, 38 | doch0 39299 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂‘{(0g‘𝑈)}) = 𝑉) |
67 | 8, 66 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑂‘{(0g‘𝑈)}) = 𝑉) |
68 | 65, 67 | sseqtrrd 3958 |
. . 3
⊢ (𝜑 → (𝑌‘(𝑆‘(0g‘𝑈))) ⊆ (𝑂‘{(0g‘𝑈)})) |
69 | 5, 59, 68 | pm2.61ne 3029 |
. 2
⊢ (𝜑 → (𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋})) |
70 | 69, 33 | eqssd 3934 |
1
⊢ (𝜑 → (𝑌‘(𝑆‘𝑋)) = (𝑂‘{𝑋})) |