| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6905 |
. . . . 5
⊢ (𝑋 = (0g‘𝑈) → (𝑆‘𝑋) = (𝑆‘(0g‘𝑈))) |
| 2 | 1 | fveq2d 6909 |
. . . 4
⊢ (𝑋 = (0g‘𝑈) → (𝑌‘(𝑆‘𝑋)) = (𝑌‘(𝑆‘(0g‘𝑈)))) |
| 3 | | sneq 4635 |
. . . . 5
⊢ (𝑋 = (0g‘𝑈) → {𝑋} = {(0g‘𝑈)}) |
| 4 | 3 | fveq2d 6909 |
. . . 4
⊢ (𝑋 = (0g‘𝑈) → (𝑂‘{𝑋}) = (𝑂‘{(0g‘𝑈)})) |
| 5 | 2, 4 | sseq12d 4016 |
. . 3
⊢ (𝑋 = (0g‘𝑈) → ((𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋}) ↔ (𝑌‘(𝑆‘(0g‘𝑈))) ⊆ (𝑂‘{(0g‘𝑈)}))) |
| 6 | | hdmaplkr.h |
. . . . . . . . . 10
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | eqid 2736 |
. . . . . . . . . 10
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) |
| 8 | | hdmaplkr.k |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 9 | 6, 7, 8 | lcdlmod 41595 |
. . . . . . . . 9
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
| 10 | | hdmaplkr.u |
. . . . . . . . . 10
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 11 | | hdmaplkr.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑈) |
| 12 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) |
| 13 | | hdmaplkr.s |
. . . . . . . . . 10
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| 14 | | hdmaplkr.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 15 | 6, 10, 11, 7, 12, 13, 8, 14 | hdmapcl 41833 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
| 16 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LSpan‘((LCDual‘𝐾)‘𝑊)) = (LSpan‘((LCDual‘𝐾)‘𝑊)) |
| 17 | 12, 16 | lspsnid 20992 |
. . . . . . . . 9
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝑆‘𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) → (𝑆‘𝑋) ∈ ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)})) |
| 18 | 9, 15, 17 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑋) ∈ ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)})) |
| 19 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
| 20 | | eqid 2736 |
. . . . . . . . . 10
⊢
((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) |
| 21 | 6, 10, 11, 19, 7, 16, 20, 13, 8, 14 | hdmap10 41843 |
. . . . . . . . 9
⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋})) = ((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)})) |
| 22 | | hdmaplkr.o |
. . . . . . . . . 10
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| 23 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LFnl‘𝑈) =
(LFnl‘𝑈) |
| 24 | | hdmaplkr.y |
. . . . . . . . . 10
⊢ 𝑌 = (LKer‘𝑈) |
| 25 | 6, 22, 20, 10, 11, 19, 23, 24, 8, 14 | mapdsn 41644 |
. . . . . . . . 9
⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘((LSpan‘𝑈)‘{𝑋})) = {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)}) |
| 26 | 21, 25 | eqtr3d 2778 |
. . . . . . . 8
⊢ (𝜑 →
((LSpan‘((LCDual‘𝐾)‘𝑊))‘{(𝑆‘𝑋)}) = {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)}) |
| 27 | 18, 26 | eleqtrd 2842 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)}) |
| 28 | 6, 7, 12, 10, 23, 8, 15 | lcdvbaselfl 41598 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑋) ∈ (LFnl‘𝑈)) |
| 29 | | fveq2 6905 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑆‘𝑋) → (𝑌‘𝑓) = (𝑌‘(𝑆‘𝑋))) |
| 30 | 29 | sseq2d 4015 |
. . . . . . . . 9
⊢ (𝑓 = (𝑆‘𝑋) → ((𝑂‘{𝑋}) ⊆ (𝑌‘𝑓) ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)))) |
| 31 | 30 | elrab3 3692 |
. . . . . . . 8
⊢ ((𝑆‘𝑋) ∈ (LFnl‘𝑈) → ((𝑆‘𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)} ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)))) |
| 32 | 28, 31 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝑋) ∈ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘{𝑋}) ⊆ (𝑌‘𝑓)} ↔ (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)))) |
| 33 | 27, 32 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋))) |
| 34 | 33 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋))) |
| 35 | | eqid 2736 |
. . . . . 6
⊢
(LSHyp‘𝑈) =
(LSHyp‘𝑈) |
| 36 | 6, 10, 8 | dvhlvec 41112 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ LVec) |
| 37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → 𝑈 ∈ LVec) |
| 38 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 39 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 40 | 14 | anim1i 615 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑈))) |
| 41 | | eldifsn 4785 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑈))) |
| 42 | 40, 41 | sylibr 234 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → 𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 43 | 6, 22, 10, 11, 38, 35, 39, 42 | dochsnshp 41456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑂‘{𝑋}) ∈ (LSHyp‘𝑈)) |
| 44 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑆‘𝑋) ∈ (LFnl‘𝑈)) |
| 45 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 46 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(0g‘(Scalar‘𝑈)) =
(0g‘(Scalar‘𝑈)) |
| 47 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(0g‘((LCDual‘𝐾)‘𝑊)) =
(0g‘((LCDual‘𝐾)‘𝑊)) |
| 48 | 6, 10, 11, 45, 46, 7, 47, 8 | lcd0v 41614 |
. . . . . . . . . . 11
⊢ (𝜑 →
(0g‘((LCDual‘𝐾)‘𝑊)) = (𝑉 ×
{(0g‘(Scalar‘𝑈))})) |
| 49 | 48 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘𝑋) =
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ (𝑆‘𝑋) = (𝑉 ×
{(0g‘(Scalar‘𝑈))}))) |
| 50 | 6, 10, 11, 38, 7, 47, 13, 8, 14 | hdmapeq0 41847 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘𝑋) =
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑋 = (0g‘𝑈))) |
| 51 | 49, 50 | bitr3d 281 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆‘𝑋) = (𝑉 ×
{(0g‘(Scalar‘𝑈))}) ↔ 𝑋 = (0g‘𝑈))) |
| 52 | 51 | necon3bid 2984 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆‘𝑋) ≠ (𝑉 ×
{(0g‘(Scalar‘𝑈))}) ↔ 𝑋 ≠ (0g‘𝑈))) |
| 53 | 52 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑆‘𝑋) ≠ (𝑉 ×
{(0g‘(Scalar‘𝑈))})) |
| 54 | 11, 45, 46, 35, 23, 24 | lkrshp 39107 |
. . . . . . 7
⊢ ((𝑈 ∈ LVec ∧ (𝑆‘𝑋) ∈ (LFnl‘𝑈) ∧ (𝑆‘𝑋) ≠ (𝑉 ×
{(0g‘(Scalar‘𝑈))})) → (𝑌‘(𝑆‘𝑋)) ∈ (LSHyp‘𝑈)) |
| 55 | 37, 44, 53, 54 | syl3anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑌‘(𝑆‘𝑋)) ∈ (LSHyp‘𝑈)) |
| 56 | 35, 37, 43, 55 | lshpcmp 38990 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → ((𝑂‘{𝑋}) ⊆ (𝑌‘(𝑆‘𝑋)) ↔ (𝑂‘{𝑋}) = (𝑌‘(𝑆‘𝑋)))) |
| 57 | 34, 56 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑂‘{𝑋}) = (𝑌‘(𝑆‘𝑋))) |
| 58 | | eqimss2 4042 |
. . . 4
⊢ ((𝑂‘{𝑋}) = (𝑌‘(𝑆‘𝑋)) → (𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋})) |
| 59 | 57, 58 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑈)) → (𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋})) |
| 60 | 6, 10, 8 | dvhlmod 41113 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 61 | 11, 38 | lmod0vcl 20890 |
. . . . . . . 8
⊢ (𝑈 ∈ LMod →
(0g‘𝑈)
∈ 𝑉) |
| 62 | 60, 61 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑈) ∈ 𝑉) |
| 63 | 6, 10, 11, 7, 12, 13, 8, 62 | hdmapcl 41833 |
. . . . . 6
⊢ (𝜑 → (𝑆‘(0g‘𝑈)) ∈
(Base‘((LCDual‘𝐾)‘𝑊))) |
| 64 | 6, 7, 12, 10, 23, 8, 63 | lcdvbaselfl 41598 |
. . . . 5
⊢ (𝜑 → (𝑆‘(0g‘𝑈)) ∈ (LFnl‘𝑈)) |
| 65 | 11, 23, 24, 60, 64 | lkrssv 39098 |
. . . 4
⊢ (𝜑 → (𝑌‘(𝑆‘(0g‘𝑈))) ⊆ 𝑉) |
| 66 | 6, 10, 22, 11, 38 | doch0 41361 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂‘{(0g‘𝑈)}) = 𝑉) |
| 67 | 8, 66 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑂‘{(0g‘𝑈)}) = 𝑉) |
| 68 | 65, 67 | sseqtrrd 4020 |
. . 3
⊢ (𝜑 → (𝑌‘(𝑆‘(0g‘𝑈))) ⊆ (𝑂‘{(0g‘𝑈)})) |
| 69 | 5, 59, 68 | pm2.61ne 3026 |
. 2
⊢ (𝜑 → (𝑌‘(𝑆‘𝑋)) ⊆ (𝑂‘{𝑋})) |
| 70 | 69, 33 | eqssd 4000 |
1
⊢ (𝜑 → (𝑌‘(𝑆‘𝑋)) = (𝑂‘{𝑋})) |