MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdslcm Structured version   Visualization version   GIF version

Theorem dvdslcm 16544
Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
dvdslcm ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))

Proof of Theorem dvdslcm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 dvds0 16217 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∥ 0)
21ad2antrr 726 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ 0)
3 oveq1 7376 . . . . . . 7 (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁))
4 0z 12516 . . . . . . . . 9 0 ∈ ℤ
5 lcmcom 16539 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁))
64, 5mpan2 691 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁))
7 lcm0val 16540 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
86, 7eqtr3d 2766 . . . . . . 7 (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0)
93, 8sylan9eqr 2786 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
109adantll 714 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0)
11 oveq2 7377 . . . . . . 7 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
12 lcm0val 16540 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
1311, 12sylan9eqr 2786 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
1413adantlr 715 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0)
1510, 14jaodan 959 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = 0)
162, 15breqtrrd 5130 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (𝑀 lcm 𝑁))
17 dvds0 16217 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
1817ad2antlr 727 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ 0)
1918, 15breqtrrd 5130 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (𝑀 lcm 𝑁))
2016, 19jca 511 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
21 lcmcllem 16542 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
22 lcmn0cl 16543 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ)
23 breq2 5106 . . . . . 6 (𝑛 = (𝑀 lcm 𝑁) → (𝑀𝑛𝑀 ∥ (𝑀 lcm 𝑁)))
24 breq2 5106 . . . . . 6 (𝑛 = (𝑀 lcm 𝑁) → (𝑁𝑛𝑁 ∥ (𝑀 lcm 𝑁)))
2523, 24anbi12d 632 . . . . 5 (𝑛 = (𝑀 lcm 𝑁) → ((𝑀𝑛𝑁𝑛) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))))
2625elrab3 3657 . . . 4 ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))))
2722, 26syl 17 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))))
2821, 27mpbid 232 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2920, 28pm2.61dan 812 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {crab 3402   class class class wbr 5102  (class class class)co 7369  0cc0 11044  cn 12162  cz 12505  cdvds 16198   lcm clcm 16534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-lcm 16536
This theorem is referenced by:  gcddvdslcm  16548  lcmneg  16549  lcmgcdeq  16558  lcmdvdsb  16559  lcmftp  16582  lcmfunsnlem2lem2  16585  lcmineqlem19  42028  lcmineqlem22  42031  nzin  44300
  Copyright terms: Public domain W3C validator