| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdslcm | Structured version Visualization version GIF version | ||
| Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| dvdslcm | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds0 16309 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∥ 0) | |
| 2 | 1 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ 0) |
| 3 | oveq1 7438 | . . . . . . 7 ⊢ (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁)) | |
| 4 | 0z 12624 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 5 | lcmcom 16630 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁)) | |
| 6 | 4, 5 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁)) |
| 7 | lcm0val 16631 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0) | |
| 8 | 6, 7 | eqtr3d 2779 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0) |
| 9 | 3, 8 | sylan9eqr 2799 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0) |
| 10 | 9 | adantll 714 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0) |
| 11 | oveq2 7439 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0)) | |
| 12 | lcm0val 16631 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
| 13 | 11, 12 | sylan9eqr 2799 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
| 14 | 13 | adantlr 715 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
| 15 | 10, 14 | jaodan 960 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = 0) |
| 16 | 2, 15 | breqtrrd 5171 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (𝑀 lcm 𝑁)) |
| 17 | dvds0 16309 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | |
| 18 | 17 | ad2antlr 727 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ 0) |
| 19 | 18, 15 | breqtrrd 5171 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (𝑀 lcm 𝑁)) |
| 20 | 16, 19 | jca 511 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
| 21 | lcmcllem 16633 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) | |
| 22 | lcmn0cl 16634 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ) | |
| 23 | breq2 5147 | . . . . . 6 ⊢ (𝑛 = (𝑀 lcm 𝑁) → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ (𝑀 lcm 𝑁))) | |
| 24 | breq2 5147 | . . . . . 6 ⊢ (𝑛 = (𝑀 lcm 𝑁) → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
| 25 | 23, 24 | anbi12d 632 | . . . . 5 ⊢ (𝑛 = (𝑀 lcm 𝑁) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
| 26 | 25 | elrab3 3693 | . . . 4 ⊢ ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
| 27 | 22, 26 | syl 17 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
| 28 | 21, 27 | mpbid 232 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
| 29 | 20, 28 | pm2.61dan 813 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 {crab 3436 class class class wbr 5143 (class class class)co 7431 0cc0 11155 ℕcn 12266 ℤcz 12613 ∥ cdvds 16290 lcm clcm 16625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-lcm 16627 |
| This theorem is referenced by: gcddvdslcm 16639 lcmneg 16640 lcmgcdeq 16649 lcmdvdsb 16650 lcmftp 16673 lcmfunsnlem2lem2 16676 lcmineqlem19 42048 lcmineqlem22 42051 nzin 44337 |
| Copyright terms: Public domain | W3C validator |